Improving/maintaining water-use efficiency and yield of wheat by deficit irrigation: A global meta-analysis

被引:107
|
作者
Yu, Liuyang [1 ,5 ]
Zhao, Xining [2 ,3 ,4 ]
Gao, Xiaodong [2 ,3 ,4 ]
Siddique, Kadambot H. M. [6 ]
机构
[1] Northwest A&F Univ, Coll Water Resources & Architectural Engn, Yangling 712100, Shaanxi, Peoples R China
[2] Northwest A&F Univ, Inst Soil & Water Conservat, Yangling 712100, Shaanxi, Peoples R China
[3] Chinese Acad Sci & Minist Water Resources, Inst Soil & Water Conservat, Yangling 712100, Shaanxi, Peoples R China
[4] Natl Engn Res Ctr Water Saving & Irrigat Technol, Yangling 712100, Shaanxi, Peoples R China
[5] Northwest A&F Univ, Key Lab Agr Soil & Water Engn Arid & Semiarid Are, Minist Educ, Yangling 712100, Shaanxi, Peoples R China
[6] Univ Western Australia, UWA Inst Agr, LB 5005, Perth, WA 6001, Australia
基金
中国国家自然科学基金;
关键词
Limited irrigation; Yield; Water-use efficiency; Meta-analysis; Win-win; Trade-off; WINTER-WHEAT; CLIMATE-CHANGE; LIMITED-IRRIGATION; FOOD SECURITY; LOESS PLATEAU; CROP YIELD; CHINA; ROOT; MANAGEMENT; STRESS;
D O I
10.1016/j.agwat.2019.105906
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Population growth and climate change are necessitating increases in food production and reduction in amounts of water used for agriculture. Deficit irrigation has been proposed as a strategy to maintain/increase yield while reducing the use of water in agriculture; however, it has not been widely adopted, in part, due to risk of reduced yield. In this paper, we describe a meta-analysis designed to quantify effects of deficit irrigation on wheat water-use efficiency (WUE) and yields, and identify optimal strategies for deploying deficit irrigation to achieve win-win effects of improving WUE and yield simultaneously. Overall, the meta-analysis of 41 peer-reviewed publications collectively containing over 381 observations showed that the win-win relationship between WUE and wheat yield does exist. Overall, deficit irrigation improved wheat WUE by 6.6 % but decreased yield by 16.2 %. However, the results varied, depending on irrigation methods (such as irrigation type, timing and water amount) and environmental factors (such as precipitation, temperature and soil properties). In order to maximize win-win effects and minimize tradeoff between WUE and yield, we found that deficit irrigation is most appropriate for areas where total precipitation during the growing season is less than 200 mm and the soil is loamy or sandy. Deficit irrigation using border and furrow irrigation is more likely to achieve high WUE and yield concurrently than drip or sprinkler irrigation. Importantly, we found that the most influential factors affecting yield and WUE are the irrigation level, and the irrigation thresholds to achieve various scenarios between WUE and yield. Our findings suggest deficit irrigation can improve yield and WUE simultaneously, and identifies the conditions under which these improvements can be realized.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Effects of deficit irrigation on yield, yield components and water-use efficiency of winter wheat
    Zhang, XY
    Pei, D
    Chen, SY
    JOURNAL OF EXPERIMENTAL BOTANY, 2003, 54 : 8 - 8
  • [2] A global meta-analysis of fruit tree yield and water use efficiency under deficit irrigation
    Tong, Xuanyue
    Wu, Pute
    Liu, Xufei
    Zhang, Lin
    Zhou, Wei
    Wang, Zhaoguo
    AGRICULTURAL WATER MANAGEMENT, 2022, 260
  • [3] Physiology, Yield and Water-Use Efficiency of Cucumber Affected By Deficit Irrigation
    Parkash, Ved
    Singh, Sukhbir
    Deb, Sanjit
    Ritchie, Glen
    Wallace, Russell W.
    HORTSCIENCE, 2020, 55 (09) : S359 - S359
  • [4] A global meta-analysis of yield and water productivity responses of vegetables to deficit irrigation
    Manpreet Singh
    Paramveer Singh
    Sukhbir Singh
    Rupinder Kaur Saini
    Sangamesh V. Angadi
    Scientific Reports, 11
  • [5] A global meta-analysis of yield and water productivity responses of vegetables to deficit irrigation
    Singh, Manpreet
    Singh, Paramveer
    Singh, Sukhbir
    Saini, Rupinder Kaur
    Angadi, Sangamesh, V
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [6] Alternate furrow irrigation affects yield and water-use efficiency of maize under deficit irrigation
    Golzardi, Farid
    Baghdadi, Amirsaleh
    Afshar, Reza Keshavarz
    CROP & PASTURE SCIENCE, 2017, 68 (08): : 726 - 734
  • [7] Effects of deficit irrigation on yield, yield components and water use efficiency of winter wheat
    Zhang, XY
    Pei, D
    Chen, SY
    Liu, MY
    WATER-SAVING AGRICULTURE AND SUSTAINABLE USE OF WATER AND LAND RESOURCES, VOLS 1 AND 2, PROCEEDINGS, 2004, : 247 - 255
  • [8] EFFECT OF IRRIGATION ON WATER-USE, WATER-USE EFFICIENCY, GROWTH AND YIELD OF MUNGBEAN
    PANNU, RK
    SINGH, DP
    FIELD CROPS RESEARCH, 1993, 31 (1-2) : 87 - 100
  • [9] Water productivity and seed cotton yield in response to deficit irrigation: A global meta-analysis
    Cheng, Minghui
    Wang, Haidong
    Fan, Junliang
    Zhang, Shaohui
    Wang, Yanli
    Li, Yuepeng
    Sun, Xin
    Yang, Ling
    Zhang, Fucang
    AGRICULTURAL WATER MANAGEMENT, 2021, 255
  • [10] Yield, fruit quality and water use efficiency of tomato for processing under regulated deficit irrigation: A meta-analysis
    Lu, Jia
    Shao, Guangcheng
    Cui, Jintao
    Wang, Xiaojun
    Keabetswe, Larona
    AGRICULTURAL WATER MANAGEMENT, 2019, 222 : 301 - 312