Semiclassical theory of the magnetization process of the triangular lattice Heisenberg model

被引:24
作者
Coletta, Tommaso [1 ]
Toth, Tamas A. [2 ]
Penc, Karlo [3 ,4 ]
Mila, Frederic [5 ]
机构
[1] Univ Appl Sci Western Switzerland, Sch Engn, CH-1950 Sion, Switzerland
[2] Univ Appl Sci Western Switzerland, Haute Ecole Gest Geneve, CH-1227 Carouge, Switzerland
[3] Hungarian Acad Sci, Wigner Res Ctr Phys, Inst Solid State Phys & Opt, POB 49, H-1525 Budapest, Hungary
[4] MTA BME Lendulet Magnetoopt Spect Res Grp, H-1111 Budapest, Hungary
[5] Ecole Polytech Fed Lausanne, Inst Phys, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
FIELD; ANTIFERROMAGNET; SPIN; PLATEAUS; CSCUCL3;
D O I
10.1103/PhysRevB.94.075136
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Motivated by the numerous examples of 1/3 magnetization plateaux in the triangular-lattice Heisenberg antiferromagnet with spins ranging from 1/2 to 5/2, we revisit the semiclassical calculation of the magnetization curve of that model, with the aim of coming up with a simple method that allows one to calculate the full magnetization curve and not just the critical fields of the 1/3 plateau. We show that it is actually possible to calculate the magnetization curve including the first quantum corrections and the appearance of the 1/3 plateau entirely within linear spin-wave theory, with predictions for the critical fields that agree to order 1/S with those derived a long time ago on the basis of arguments that required going beyond linear spin-wave theory. This calculation relies on the central observation that there is a kink in the semiclassical energy at the field where the classical ground state is the collinear up-up-down structure and that this kink gives rise to a locally linear behavior of the energy with the field when all semiclassical ground states are compared to each other for all fields. The magnetization curves calculated in this way for spin 1/2, 1, and 5/2 are shown to be in good agreement with available experimental data.
引用
收藏
页数:10
相关论文
共 41 条
[1]   Quantum kagome antiferromagnet in a magnetic field: Low-lying nonmagnetic excitations versus valence-bond crystal order [J].
Cabra, DC ;
Grynberg, MD ;
Holdsworth, PCW ;
Honecker, A ;
Pujol, P ;
Richter, J ;
Schmalfuss, D ;
Schulenburg, J .
PHYSICAL REVIEW B, 2005, 71 (14)
[2]   Numerical study of magnetization plateaus in the spin-1/2 kagome Heisenberg antiferromagnet [J].
Capponi, Sylvain ;
Derzhko, Oleg ;
Honecker, Andreas ;
Laeuchli, Andreas M. ;
Richter, Johannes .
PHYSICAL REVIEW B, 2013, 88 (14)
[3]   QUANTUM-THEORY OF AN ANTIFERROMAGNET ON A TRIANGULAR LATTICE IN A MAGNETIC-FIELD [J].
CHUBUKOV, AV ;
GOLOSOV, DI .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1991, 3 (01) :69-82
[4]   Quantum stabilization of classically unstable plateau structures [J].
Coletta, Tommaso ;
Zhitomirsky, M. E. ;
Mila, Frederic .
PHYSICAL REVIEW B, 2013, 87 (06)
[5]   Crystals of Bound States in the Magnetization Plateaus of the Shastry-Sutherland Model [J].
Corboz, Philippe ;
Mila, Frederic .
PHYSICAL REVIEW LETTERS, 2014, 112 (14)
[6]   High-order coupled cluster method study of frustrated and unfrustrated quantum magnets in external magnetic fields [J].
Farnell, D. J. J. ;
Zinke, R. ;
Schulenburg, J. ;
Richter, J. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (40)
[7]   Forces in molecules [J].
Feynman, RP .
PHYSICAL REVIEW, 1939, 56 (04) :340-343
[8]   DILUTE BOSE-GAS IN 2 DIMENSIONS [J].
FISHER, DS ;
HOHENBERG, PC .
PHYSICAL REVIEW B, 1988, 37 (10) :4936-4943
[9]   Cascade of Magnetic-Field-Induced Quantum Phase Transitions in a Spin-1/2 Triangular-Lattice Antiferromagnet [J].
Fortune, N. A. ;
Hannahs, S. T. ;
Yoshida, Y. ;
Sherline, T. E. ;
Ono, T. ;
Tanaka, H. ;
Takano, Y. .
PHYSICAL REVIEW LETTERS, 2009, 102 (25)
[10]   2-DIMENSIONAL QUANTUM ANTIFERROMAGNET IN A STRONG MAGNETIC-FIELD - THE CASE OF ARBITRARY SPIN [J].
GLUZMAN, S .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1993, 90 (03) :313-318