A Two-Grid Binary Level Set Method for Eigenvalue Optimization
被引:6
作者:
Zhang, Jing
论文数: 0引用数: 0
h-index: 0
机构:
East China Normal Univ, Sch Math Sci, Shanghai 200241, Peoples R ChinaEast China Normal Univ, Sch Math Sci, Shanghai 200241, Peoples R China
Zhang, Jing
[1
]
Zhu, Shengfeng
论文数: 0引用数: 0
h-index: 0
机构:
East China Normal Univ, Sch Math Sci, Shanghai 200241, Peoples R ChinaEast China Normal Univ, Sch Math Sci, Shanghai 200241, Peoples R China
Zhu, Shengfeng
[1
]
Liu, Chunxiao
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Lixin Univ Accounting & Finance, Sch Stat & Math, Shanghai 201209, Peoples R ChinaEast China Normal Univ, Sch Math Sci, Shanghai 200241, Peoples R China
Liu, Chunxiao
[2
]
Shen, Xiaoqin
论文数: 0引用数: 0
h-index: 0
机构:
Xian Univ Technol, Sch Sci, Xian 710054, Peoples R ChinaEast China Normal Univ, Sch Math Sci, Shanghai 200241, Peoples R China
Shen, Xiaoqin
[3
]
机构:
[1] East China Normal Univ, Sch Math Sci, Shanghai 200241, Peoples R China
[2] Shanghai Lixin Univ Accounting & Finance, Sch Stat & Math, Shanghai 201209, Peoples R China
[3] Xian Univ Technol, Sch Sci, Xian 710054, Peoples R China
Topology optimization;
Binary level set method;
Finite element method;
Two-grid;
Eigenvalue;
EIGENFREQUENCY;
MULTILEVEL;
VIBRATION;
SCHEME;
MODEL;
D O I:
10.1007/s10915-021-01662-1
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Two-grid methods are popular and efficient discretization techniques for solving nonlinear problems. In this paper, we propose a new two-grid binary level set method for eigenvalue optimization. An efficient yet effective two-grid finite element method is used to solve the nonlinear eigenvalue problem in two topology optimization models. By the binary level set method, the algorithm can perform topological and shape changes. Numerical examples are presented to illustrate the effectiveness and efficiency of the algorithm.
机构:
Ecole Polytech, CMAP, UMR 7641, F-91128 Palaiseau, FranceEcole Polytech, CMAP, UMR 7641, F-91128 Palaiseau, France
Allaire, G.
Dapogny, C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 06, Sorbonne Univ, Lab JL Lions, UMR 7598, F-75005 Paris, France
Renault DREAM DELTA, Guyancourt, FranceEcole Polytech, CMAP, UMR 7641, F-91128 Palaiseau, France
Dapogny, C.
Frey, P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 06, Sorbonne Univ, Lab JL Lions, UMR 7598, F-75005 Paris, France
CNRS, Lab Jacques Louis Lions, UMR 7598, F-75005 Paris, FranceEcole Polytech, CMAP, UMR 7641, F-91128 Palaiseau, France
机构:
Ecole Polytech, UMR 7641, Ctr Math Appl, F-91128 Palaiseau, France
Renault DREAM DTAA, Guyancourt, FranceEcole Polytech, UMR 7641, Ctr Math Appl, F-91128 Palaiseau, France
Dapogny, Charles
Frey, Pascal
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 06, UPMC, UMR 7598, Lab JL Lions, F-75005 Paris, FranceEcole Polytech, UMR 7641, Ctr Math Appl, F-91128 Palaiseau, France
机构:
Ecole Polytech, CMAP, UMR 7641, F-91128 Palaiseau, FranceEcole Polytech, CMAP, UMR 7641, F-91128 Palaiseau, France
Allaire, G.
Dapogny, C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 06, Sorbonne Univ, Lab JL Lions, UMR 7598, F-75005 Paris, France
Renault DREAM DELTA, Guyancourt, FranceEcole Polytech, CMAP, UMR 7641, F-91128 Palaiseau, France
Dapogny, C.
Frey, P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 06, Sorbonne Univ, Lab JL Lions, UMR 7598, F-75005 Paris, France
CNRS, Lab Jacques Louis Lions, UMR 7598, F-75005 Paris, FranceEcole Polytech, CMAP, UMR 7641, F-91128 Palaiseau, France
机构:
Ecole Polytech, UMR 7641, Ctr Math Appl, F-91128 Palaiseau, France
Renault DREAM DTAA, Guyancourt, FranceEcole Polytech, UMR 7641, Ctr Math Appl, F-91128 Palaiseau, France
Dapogny, Charles
Frey, Pascal
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 06, UPMC, UMR 7598, Lab JL Lions, F-75005 Paris, FranceEcole Polytech, UMR 7641, Ctr Math Appl, F-91128 Palaiseau, France