A Two-Grid Binary Level Set Method for Eigenvalue Optimization

被引:6
作者
Zhang, Jing [1 ]
Zhu, Shengfeng [1 ]
Liu, Chunxiao [2 ]
Shen, Xiaoqin [3 ]
机构
[1] East China Normal Univ, Sch Math Sci, Shanghai 200241, Peoples R China
[2] Shanghai Lixin Univ Accounting & Finance, Sch Stat & Math, Shanghai 201209, Peoples R China
[3] Xian Univ Technol, Sch Sci, Xian 710054, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Topology optimization; Binary level set method; Finite element method; Two-grid; Eigenvalue; EIGENFREQUENCY; MULTILEVEL; VIBRATION; SCHEME; MODEL;
D O I
10.1007/s10915-021-01662-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two-grid methods are popular and efficient discretization techniques for solving nonlinear problems. In this paper, we propose a new two-grid binary level set method for eigenvalue optimization. An efficient yet effective two-grid finite element method is used to solve the nonlinear eigenvalue problem in two topology optimization models. By the binary level set method, the algorithm can perform topological and shape changes. Numerical examples are presented to illustrate the effectiveness and efficiency of the algorithm.
引用
收藏
页数:21
相关论文
共 33 条
  • [1] A level-set method for vibration and multiple loads structural optimization
    Allaire, G
    Jouve, F
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (30-33) : 3269 - 3290
  • [2] Shape optimization with a level set based mesh evolution method
    Allaire, G.
    Dapogny, C.
    Frey, P.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 282 : 22 - 53
  • [3] Eigenfrequency optimization in optimal design
    Allaire, G
    Aubry, S
    Jouve, F
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 190 (28) : 3565 - 3579
  • [4] Bendsoe MP, 2003, TOPOLOGY OPTIMIZATIO, DOI DOI 10.1007/978-3-662-05086-6
  • [5] Symmetry breaking and other phenomena in the optimization of eigenvalues for composite membranes
    Chanillo, S
    Grieser, D
    Imai, M
    Kurata, K
    Ohnishi, I
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 214 (02) : 315 - 337
  • [6] Minimizing Eigenvalues for Inhomogeneous Rods and Plates
    Chen, Weitao
    Chou, Ching-Shan
    Kao, Chiu-Yen
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2016, 69 (03) : 983 - 1013
  • [7] Cox StevenJ., 1991, Japan Journal of Industrial and Applied Mathematics, V8, P345, DOI [10.1007/bf03167141, DOI 10.1007/BF03167141]
  • [8] A Variational Binary Level Set Method for Structural Topology Optimization
    Dai, Xiaoxia
    Tang, Peipei
    Cheng, Xiaoliang
    Wu, Minghui
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2013, 13 (05) : 1292 - 1308
  • [9] Computation of the signed distance function to a discrete contour on adapted triangulation
    Dapogny, Charles
    Frey, Pascal
    [J]. CALCOLO, 2012, 49 (03) : 193 - 219
  • [10] Velocity extension for the level-set method and multiple eigenvalues in shape optimization
    De Gournay, F
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2006, 45 (01) : 343 - 367