Remarks on the restrained Italian domination number in graphs

被引:7
作者
Volkmann, Lutz [1 ]
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl 2 Math, D-52056 Aachen, Germany
关键词
Italian domination; restrained Italian domination; restrained domination; ROMAN DOMINATION;
D O I
10.22049/CCO.2021.27471.1269
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph with vertex set V (G). An Italian dominating function (IDF) is a function f : V (G) -> {0, 1, 2} having the property that that f(N(u)) >= 2 for every vertex u is an element of V (G) with f(u) = 0, where N(u) is the neighborhood of u. If f is an IDF on G, then let V-0 = {v is an element of V (G) : f(v) = 0}. A restrained Italian dominating function (RIDF) is an Italian dominating function f having the property that the subgraph induced by V-0 does not have an isolated vertex. The weight of an RIDF f is the sum Sigma(v is an element of 2V(G)) f(v), and the minimum weight of an RIDF on a graph G is the restrained Italian domination number. We present sharp bounds for the restrained Italian domination number, and we determine the restrained Italian domination number for some families of graphs.
引用
收藏
页码:183 / 191
页数:9
相关论文
共 50 条
[31]   Hop Italian domination in graphs [J].
Canoy, Sergio R. ;
Jamil, Ferdinand P. ;
Menchavez, Sheila M. .
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (04) :2431-2449
[32]   From the Strong Differential to Italian Domination in Graphs [J].
Cabrera Martinez, A. ;
Rodriguez-Velazquez, J. A. .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (05)
[33]   Perfect Italian domination in graphs: Complexity and algorithms [J].
Pradhan, D. ;
Banerjee, S. ;
Liu, Jia-Bao .
DISCRETE APPLIED MATHEMATICS, 2022, 319 :271-295
[34]   Restrained Roman and restrained Italian domatic numbers of graphs [J].
Volkmann, Lutz .
DISCRETE APPLIED MATHEMATICS, 2022, 322 :153-159
[35]   On the {2}-domination number of graphs [J].
Cabrera-Martinez, Abel ;
Conchado Peiro, Andrea .
AIMS MATHEMATICS, 2022, 7 (06) :10731-10743
[37]   Maximum sizes of graphs with given restrained domination numbers [J].
Joubert, Ernst J. .
DISCRETE APPLIED MATHEMATICS, 2013, 161 (06) :829-837
[38]   From Italian domination in lexicographic product graphs to w-domination in graphs [J].
Cabrera Martinez, Abel ;
Estrada-Moreno, Alejandro ;
Alberto Rodriguez-Velazquez, Juan .
ARS MATHEMATICA CONTEMPORANEA, 2022, 22 (01)
[39]   Italian domination on Mycielskian and Sierpinski graphs [J].
Varghese, Jismy ;
Lakshmanan, S. Aparna .
DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2021, 13 (04)
[40]   Italian Domination in Rooted Product Graphs [J].
R. Hernández-Ortiz ;
L. P. Montejano ;
J. A. Rodríguez-Velázquez .
Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 :497-508