Image dataset on the Chinese medicinal blossoms for classification through convolutional neural network

被引:10
|
作者
Huang, Mei-Ling [1 ]
Xu, Yi-Xuan [1 ]
Liao, Yu-Chieh [1 ]
机构
[1] Natl Chin Yi Univ Technol, Dept Ind Engn & Management, Taichung, Taiwan
来源
DATA IN BRIEF | 2021年 / 39卷
关键词
Chinese medicinal blossom; Classification; Data augmentation; Deep learning;
D O I
10.1016/j.dib.2021.107655
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Tree blossoms have been widely used on the prevention and treatment of a variety of diseases in traditional Chinese medicine for thousand years [1,2]. The growth of flowers is not only for their ornamental value, but also for nutritional, medicinal, cooking, cosmetic and aromatic properties. They are a rich source of many compounds, which play an important role in various metabolic processes of the human body [3]. Edible flowers can promote the global demand for more attractive and delicious food, and can improve the nutritional content of gourmet food [4]. Flowers are beneficial for anti-anxiety, anti-cancer, anti-inflammatory, antioxidant, diuretic and immune-modulator, etc. It is very important to identify edible flowers correctly, because only a few are edible [5]. The shapes or colors of different flowers may be very similar. Visual evaluation is one of the classification methods, but it is error-prone and time-consuming [6]. Flowers are divided into flowers from herbaceous plants (flower) and flower trees (blossom). Now there is a public herbaceous flower dataset [7], but lack of dataset for Chinese medicinal blossoms. This article presents and establishes the dataset for twelve most commonly and economically valuable blossoms used in traditional Chinese medicine. The dataset provide a collection of blossom images on traditional Chinese herbs help Chinese pharmacist to classify the categories of Chinese herbs. In addition, the dataset can serve as a resource for researchers who use different algorithms of machine learning or deep learning for image segmentation and image classification. (C) 2021 The Author(s). Published by Elsevier Inc.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Image classification of Chinese medicinal flowers based on convolutional neural network
    Huang, Meiling
    Xu, Yixuan
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (08) : 14978 - 14994
  • [2] Malware classification through image processing with a convolutional neural network
    Marin, David
    Orozco-Rosas, Ulises
    Picos, Kenia
    OPTICS AND PHOTONICS FOR INFORMATION PROCESSING XVI, 2022, 12225
  • [3] A Convolutional Fuzzy Neural Network for Image Classification
    Korshunova, Kseniya P.
    PROCEEDINGS OF THE 2018 3RD RUSSIAN-PACIFIC CONFERENCE ON COMPUTER TECHNOLOGY AND APPLICATIONS (RPC), 2018,
  • [4] Simple Convolutional Neural Network on Image Classification
    Guo, Tianmei
    Dong, Jiwen
    Li, Henjian
    Gao, Yunxing
    2017 IEEE 2ND INTERNATIONAL CONFERENCE ON BIG DATA ANALYSIS (ICBDA), 2017, : 721 - 724
  • [5] Hyperspectral Image Classification Using Modified Convolutional Neural Network
    Kalita, Shashanka
    Biswas, Mantosh
    PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS), 2018, : 1884 - 1889
  • [6] Polarimetric Multipath Convolutional Neural Network for PolSAR Image Classification
    Cui, Yuanhao
    Liu, Fang
    Jiao, Licheng
    Guo, Yuwei
    Liang, Xuefeng
    Li, Lingling
    Yang, Shuyuan
    Qian, Xiaoxue
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [7] Food Image Classification with Convolutional Neural Network
    Islam, Md Tohidul
    Siddique, B. M. Nafiz Karim
    Rahman, Sagidur
    Jabid, Taskeed
    2018 INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATICS AND BIOMEDICAL SCIENCES (ICIIBMS), 2018, : 257 - +
  • [8] Improved Breast Cancer Classification Through Combining Graph Convolutional Network and Convolutional Neural Network
    Zhang, Yu-Dong
    Satapathy, Suresh Chandra
    Guttery, David S.
    Manuel Gorriz, Juan
    Wang, Shui-Hua
    INFORMATION PROCESSING & MANAGEMENT, 2021, 58 (02)
  • [9] Automated quality control of vacuum insulated glazing by convolutional neural network image classification
    Riedel, Henrik
    Mokdad, Sleheddine
    Schulz, Isabell
    Kocer, Cenk
    Rosendahl, Philipp L.
    Schneider, Jens
    Kraus, Michael A.
    Drass, Michael
    AUTOMATION IN CONSTRUCTION, 2022, 135
  • [10] Image Based ECG Signal Classification Using Convolutional Neural Network
    Hadiyoso, Sugondo
    Fahrozi, Farrel
    Hariyani, Yuli Sun
    Sulistyo, Mahmud Dwi
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2022, 18 (04) : 64 - 78