pH-Responsive Succinoglycan-Carboxymethyl Cellulose Hydrogels with Highly Improved Mechanical Strength for Controlled Drug Delivery Systems

被引:25
|
作者
Shin, Younghyun [1 ]
Kim, Dajung [1 ]
Hu, Yiluo [1 ]
Kim, Yohan [1 ]
Hong, In Ki [2 ]
Kim, Moo Sung [3 ]
Jung, Seunho [1 ,4 ,5 ]
机构
[1] Konkuk Univ, Ctr Biotechnol Res UBITA CBRU, Dept Biosci & Biotechnol, Seoul 05029, South Korea
[2] Kolmar Korea, Covergence Technol Lab, 61,Heolleung Ro 8 Gil, Seoul 06800, South Korea
[3] Macrocare, 32 Gangni 1 Gil, Cheongju 28126, South Korea
[4] Konkuk Univ, Ctr Biotechnol Res UBITA CBRU, Dept Syst Biotechnol, Seoul 05029, South Korea
[5] Konkuk Univ, Inst Ubiquitous Informat Technol & Applicat UBITA, Seoul 05029, South Korea
基金
新加坡国家研究基金会;
关键词
hydrogels; carboxymethyl cellulose; succinoglycan; metal coordination; drug delivery; swelling properties; GELATIN HYDROGELS; XANTHAN GUM; ACID; POLYACRYLAMIDE; POLYMERIZATION; COORDINATION; RELEASE; BEADS; FE3+;
D O I
10.3390/polym13183197
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Carboxymethyl cellulose (CMC)-based hydrogels are generally superabsorbent and biocompatible, but their low mechanical strength limits their application. To overcome these drawbacks, we used bacterial succinoglycan (SG), a biocompatible natural polysaccharide, as a double crosslinking strategy to produce novel interpenetrating polymer network (IPN) hydrogels in a non-bead form. These new SG/CMC-based IPN hydrogels significantly increased the mechanical strength while maintaining the characteristic superabsorbent property of CMC-based hydrogels. The SG/CMC gels exhibited an 8.5-fold improvement in compressive stress and up to a 6.5-fold higher storage modulus (G ') at the same strain compared to the CMC alone gels. Furthermore, SG/CMC gels not only showed pH-controlled drug release for 5-fluorouracil but also did not show any cytotoxicity to HEK-293 cells. This suggests that SG/CMC hydrogels could be used as future biomedical biomaterials for drug delivery.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] pH-Responsive Lyotropic Liquid Crystals for Controlled Drug Delivery
    Negrini, Renata
    Mezzenga, Raffaele
    LANGMUIR, 2011, 27 (09) : 5296 - 5303
  • [32] Preparation of photo-cross-linked pH-responsive polypeptide nanogels as potential carriers for controlled drug delivery
    Ding, Jianxun
    Zhuang, Xiuli
    Xiao, Chunsheng
    Cheng, Yilong
    Zhao, Li
    He, Chaoliang
    Tang, Zhaohui
    Chen, Xuesi
    JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (30) : 11383 - 11391
  • [33] A pH-responsive hydrogel system based on cellulose and dopamine with controlled hydrophobic drug delivery ability and long-term bacteriostatic property
    Yan, Qing
    Liu, Lulu
    Wang, Ting
    Wang, Henan
    COLLOID AND POLYMER SCIENCE, 2019, 297 (05) : 705 - 717
  • [34] pH-responsive IPN beads of carboxymethyl konjac glucomannan and sodium carboxymethyl cellulose as a controlled release carrier for ibuprofen
    Lohani, Alka
    Saxena, Ritika
    Khan, Shahbaz
    Mascarenhas-Melo, Filipa
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 278
  • [35] Biodegradable gelatin-based nanospheres as pH-responsive drug delivery systems
    Curcio, Manuela
    Altimari, Ilaria
    Spizzirri, Umile Gianfranco
    Cirillo, Giuseppe
    Vittorio, Orazio
    Puoci, Francesco
    Picci, Nevio
    Iemma, Francesca
    JOURNAL OF NANOPARTICLE RESEARCH, 2013, 15 (04)
  • [36] Radiation development of pH-responsive (xanthan-acrylic acid)/MgO nanocomposite hydrogels for controlled delivery of methotrexate anticancer drug
    El-Sawy, Naeem M.
    Raafat, Amany I.
    Badawy, Nagwa A.
    Mohamed, Asmaa M.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2020, 142 : 254 - 264
  • [37] Mathematical Models for Controlled Drug Release Through pH-Responsive Polymeric Hydrogels
    Manga, Ramya D.
    Jha, Prateek K.
    JOURNAL OF PHARMACEUTICAL SCIENCES, 2017, 106 (02) : 629 - 638
  • [38] ABC triblock copolymers with pH-responsive LCST for controlled drug delivery
    Gan, Yan-Chang
    Yuan, Jin-Fang
    Liu, Xue-Jun
    Wang, Pan
    Gao, Qing-Yu
    JOURNAL OF BIOACTIVE AND COMPATIBLE POLYMERS, 2011, 26 (02) : 173 - 190
  • [39] Magnetically driven pH-responsive composite hydrogel for controlled drug delivery
    Zhang, Zhiqin
    Wang, Ruofei
    Yuan, Miaofa
    Huang, Xuanze
    Ding, Chen
    Wu, Huaping
    Wang, Shunli
    Liu, Aiping
    FUNCTIONAL MATERIALS LETTERS, 2022, 15 (05)
  • [40] Novel pH-responsive multilayer magnetic nanoparticles for controlled drug delivery
    Motevalizadeh, Seyed Farshad
    Khoobi, Mehdi
    Babanejad, Niloofar
    Mohit, Elham
    Dehghankelishadi, Pouya
    Javar, Hamid Akbari
    Dorkoosh, Farid A.
    Faramarzi, Mohammad Ali
    Shafiee, Abbas
    JOURNAL OF THE IRANIAN CHEMICAL SOCIETY, 2016, 13 (09) : 1653 - 1666