Remarks on multiple nontrivial solutions for quasi-linear resonant problems

被引:138
作者
Liu, J [1 ]
Su, JB [1 ]
机构
[1] Peking Univ, Acad Math Sci, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
quasi-linear elliptic equation; double resonance; critical group; homological nontrivial critical point; Morse theory; local linking; multiple solutions;
D O I
10.1006/jmaa.2000.7374
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper Morse theory and local linking are used to study the existence of multiple nontrivial solutions for a class of Dirichlet boundary value problems with double resonance at infinity and at 0. (C) 2001 Academic Press.
引用
收藏
页码:209 / 222
页数:14
相关论文
共 23 条
[1]   STRONGLY NONLINEAR ELLIPTIC PROBLEMS NEAR RESONANCE - A VARIATIONAL APPROACH [J].
ANANE, A ;
GOSSEZ, JP .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1990, 15 (08) :1141-1159
[2]  
[Anonymous], 1989, CRITICAL POINT THEOR
[3]   Landesman-Lazer conditions and quasilinear elliptic equations [J].
Arcoya, D ;
Orsina, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (10) :1623-1632
[4]   ABSTRACT CRITICAL-POINT THEOREMS AND APPLICATIONS TO SOME NON-LINEAR PROBLEMS WITH STRONG RESONANCE AT INFINITY [J].
BARTOLO, P ;
BENCI, V ;
FORTUNATO, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (09) :981-1012
[5]   Critical point theory for asymptotically quadratic functionals and applications to problems with resonance [J].
Bartsch, T ;
Li, SJ .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (03) :419-441
[6]  
CHANG GQ, 1983, CHINESE ANN MATH B, V4, P381
[7]  
Chang K.C, 1993, Infinite Dimensional Morse Theory and Multiple Solution Problems, V6
[8]   SOLUTIONS OF ASYMPTOTICALLY LINEAR OPERATOR-EQUATIONS VIA MORSE-THEORY [J].
CHANG, KC .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1981, 34 (05) :693-712
[9]  
CHANG KC, 1994, TOPOL METHOD NONL AN, V3, P179
[10]  
Chang KC, 1983, SCI SINICA A, V24, P1241