Semiconductor-based photocatalysts for photocatalytic and photoelectrochemical water splitting: will we stop with photocorrosion?

被引:310
作者
Chen, Sha [1 ,2 ]
Huang, Danlian [1 ,2 ]
Xu, Piao [1 ,2 ]
Xue, Wenjing [1 ,2 ]
Lei, Lei [1 ,2 ]
Cheng, Min [1 ,2 ]
Wang, Rongzhong [1 ,2 ]
Liu, Xigui [1 ,2 ]
Deng, Rui [1 ,2 ]
机构
[1] Hunan Univ, Coll Environm Sci & Engn, Changsha 410082, Hunan, Peoples R China
[2] Hunan Univ, Minist Educ, Key Lab Environm Biol & Pollut Control, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
VISIBLE-LIGHT-DRIVEN; EFFICIENT HYDROGEN GENERATION; ATOMIC LAYER DEPOSITION; DECORATED CDS NANORODS; HIGHLY EFFICIENT; CADMIUM-SULFIDE; SOLID-SOLUTION; NOBLE-METAL; H-2; EVOLUTION; STABLE PHOTOCATALYST;
D O I
10.1039/c9ta12799b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The status of photocatalytic (PC)/photoelectrochemical (PEC) water splitting as a promising approach to solar-to-chemical energy conversion has increased significantly over the past several decades for addressing the energy shortage. However, the overall energy conversion efficiency is still relatively poor due to the severe photocorrosion in photosensitive semiconductors. Herein, the review begins with the discussion of the photocorrosion mechanism with several typical semiconductors as examples. Then the feasible characterization methods used to evaluate the stability of semiconductors are summarized. Notably, most studies regarding water splitting focus on achieving high efficiency by improving the charge separation and transfer efficiency within the semiconductors. This review focuses on the recent advances in effective strategies for photocorrosion inhibition of semiconductor-based composites with respect to their intrinsic properties and interface charge transfer kinetics, including morphology/size control, heteroatom doping, heterojunction construction, surface modification, and reaction environment regulation. Furthermore, an in-depth investigation of photocorrosion pathways and mechanisms is critical to accurately and effectively address the photocorrosion of semiconductor-based composites to improve PC/PEC water splitting performance in the future.
引用
收藏
页码:2286 / 2322
页数:37
相关论文
共 212 条
[1]   Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting [J].
Ager, Joel W. ;
Shaner, Matthew R. ;
Walczak, Karl A. ;
Sharp, Ian D. ;
Ardo, Shane .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (10) :2811-2824
[2]   Nanoporous hematite structures to overcome short diffusion lengths in water splitting [J].
Ahn, Hyo-Jin ;
Kwak, Myung-Jun ;
Lee, Jung-Soo ;
Yoon, Ki-Yong ;
Jang, Ji-Hyun .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (47) :19999-20003
[3]   Solar Water Splitting by TiO2/CdS/Co-Pi Nanowire Array Photoanode Enhanced with Co-Pi as Hole Transfer Relay and CdS as Light Absorber [J].
Ai, Guanjie ;
Li, Hongxing ;
Liu, Shaopei ;
Mo, Rong ;
Zhong, Jianxin .
ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (35) :5706-5713
[4]   Phase junction CdS: High efficient and stable photocatalyst for hydrogen generation [J].
Ai, Zizheng ;
Zhao, Gang ;
Zhong, Yueyao ;
Shao, Yongliang ;
Huang, Baibiao ;
Wu, Yongzhong ;
Hao, Xiaopeng .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 221 :179-186
[5]  
[Anonymous], 2016, J LARGE SCALE RES FA
[6]   Highly stable CuO incorporated TiO2 catalyst for photocatalytic hydrogen production from H2O [J].
Bandara, J ;
Udawatta, CPK ;
Rajapakse, CSK .
PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES, 2005, 4 (11) :857-861
[7]   Hybrid Semiconductor-Metal Nanoparticles: From Architecture to Function [J].
Banin, Uri ;
Ben-Shahar, Yuval ;
Vinokurov, Kathy .
CHEMISTRY OF MATERIALS, 2014, 26 (01) :97-110
[8]  
Bao N., 2014, CHEM LETT, V8, P6979
[9]   PHOTOELECTROCHEMISTRY AND HETEROGENEOUS PHOTOCATALYSIS AT SEMICONDUCTORS [J].
BARD, AJ .
JOURNAL OF PHOTOCHEMISTRY, 1979, 10 (01) :59-75
[10]   Ultrafast Carrier Dynamics in Nanostructures for Solar Fuels [J].
Baxter, Jason B. ;
Richter, Christiaan ;
Schmuttenmaer, Charles A. .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, VOL 65, 2014, 65 :423-447