A posteriori error estimates for convex boundary control problems

被引:128
作者
Liu, WB [1 ]
Yan, NN
机构
[1] Univ Kent, Canterbury Business Sch, Canterbury CT2 7NF, Kent, England
[2] Univ Kent, Inst Math & Stat, Canterbury CT2 7NF, Kent, England
关键词
optimal boundary control; finite element approximation; adaptive finite element methods; a posteriori error analysis;
D O I
10.1137/S0036142999352187
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present an a posteriori error analysis for the finite element approximation of convex optimal Neumann boundary control problems. We derive a posteriori error estimates for both the state and the control approximation, rst on polygonal domains and then on Lipschitz piecewise C-2 domains. Such estimates, which are apparently not available in the literature, can be used to construct reliable adaptive finite element approximation schemes for the control problems. Explicit estimates are shown for some model problems that frequently appear in applications.
引用
收藏
页码:73 / 99
页数:27
相关论文
共 47 条
[1]  
Adams R. A., 1975, SOBOLEV SPACES
[2]   A posteriori error estimation in finite element analysis [J].
Ainsworth, M ;
Oden, JT .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 142 (1-2) :1-88
[3]  
AINSWORTH M, 1993, NUMER METH PART D E, V9, P22
[4]  
ALOTTO P, 1996, IEEE T MAGNETICS, V32
[5]   ON THE APPROXIMATION OF INFINITE OPTIMIZATION PROBLEMS WITH AN APPLICATION TO OPTIMAL-CONTROL PROBLEMS [J].
ALT, W .
APPLIED MATHEMATICS AND OPTIMIZATION, 1984, 12 (01) :15-27
[6]   CONVERGENCE OF FINITE-ELEMENT APPROXIMATIONS TO STATE CONSTRAINED CONVEX PARABOLIC BOUNDARY CONTROL-PROBLEMS [J].
ALT, W ;
MACKENROTH, U .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1989, 27 (04) :718-736
[7]   MESH REFINEMENT FOR SHAPE OPTIMIZATION [J].
BANICHUK, NV ;
BARTHOLD, FJ ;
FALK, A ;
STEIN, E .
STRUCTURAL OPTIMIZATION, 1995, 9 (01) :46-51
[8]  
BANK RE, 1985, MATH COMPUT, V44, P283, DOI 10.1090/S0025-5718-1985-0777265-X
[9]   A POSTERIORI ERROR-ESTIMATES FOR THE ADAPTATIVE COMPUTATION OF QUASINEWTONIAN FLOWS [J].
BARANGER, J ;
ELAMRI, H .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1991, 25 (01) :31-47
[10]  
Barbu V., 1984, OPTIMAL CONTROL VARI, DOI DOI 10.1007/BF01442167