Nonlinear stability of laminar flows in an inclined heated layer with an imposed magnetic field

被引:1
作者
Xu, Lanxi [1 ]
机构
[1] Beijing Univ Chem Technol, Dept Math, Beijing 100029, Peoples R China
关键词
hydromagnetic laminar flows; inclined fluid layer heated from below; Lyapunov function; nonlinear stability; Rayleigh number; BENARD-PROBLEM;
D O I
10.1002/mma.6284
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Nonlinear stability of stationary laminar flow solutions of two inclined parallel planes filled with a hydromagnetic fluid heated from below is studied via Lyapunov direct method. In order to determine the energy stability bound for the critical Rayleigh number ( RaE) explicitly, for Ra<RaE, the laminar flow solutions of the problem are nonlinearly unconditionally and exponentially stable, and we consider just transverse perturbations. Compared with the results in the literature, conditions for the nonlinear stability obtained in this article have no restriction on the magnetic Prandtl number Pm.
引用
收藏
页码:5441 / 5449
页数:9
相关论文
共 19 条
  • [1] Bounds on dissipation in magnetohydrodynamic Couette and Hartmann shear flows
    Alexakis, A
    Pétrélis, F
    Morrison, PJ
    Doering, CR
    [J]. PHYSICS OF PLASMAS, 2003, 10 (11) : 4324 - 4334
  • [2] Batchelor G., 2000, INTRO FLUID DYNAMICS
  • [3] Chandrasekhar S, 1961, HYDRODYNAMIC HYDROMA
  • [4] Stability of hydromagnetic laminar flows in an inclined heated layer
    Falsaperla, Paolo
    Giacobbe, Andrea
    Lombardo, Sebastiano
    Mulone, Giuseppe
    [J]. RICERCHE DI MATEMATICA, 2017, 66 (01) : 125 - 140
  • [5] LAMINAR HYDROMAGNETIC FLOWS IN AN INCLINED HEATED LAYER
    Falsaperla, Paolo
    Giacobbe, Andrea
    Lombardo, Sebastiano
    Mulone, Giuseppe
    [J]. ATTI ACCADEMIA PELORITANA DEI PERICOLANTI-CLASSE DI SCIENZE FISICHE MATEMATICHE E NATURALI, 2016, 94 (01): : A51 - A515
  • [6] Ferraro V.C. A., 1961, An introduction to magneto-fluid mechanics
  • [7] A NONLINEAR-ANALYSIS OF THE STABILIZING EFFECT OF ROTATION IN THE BENARD-PROBLEM
    GALDI, GP
    STRAUGHAN, B
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1985, 402 (1823): : 257 - 283
  • [8] JOSEPH DD, 1966, ARCH RATION MECH AN, V22, P163
  • [9] Nonlinear stability of the rotating Benard problem, the case Pr=1
    Kaiser, Ralf
    Xu, L. X.
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1998, 5 (03): : 283 - 307
  • [10] Nonlinear stability in reaction-diffusion systems via optimal Lyapunov functions
    Lombardo, S.
    Mulone, G.
    Trovato, M.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (01) : 461 - 476