The influence of methane and CO2 adsorption on the functional groups of coals: Insights from a Fourier transform infrared investigation

被引:50
|
作者
Wang, Kai [1 ,2 ]
Du, Feng [1 ,2 ]
Wang, Gongda [3 ]
机构
[1] China Univ Min & Technol Beijing, Beijing Key Lab Precise Min Intergrown Energy & R, Beijing 100083, Peoples R China
[2] China Univ Min & Technol Beijing, Fac Resources & Safety Engn, Beijing 100083, Peoples R China
[3] China Coal Res Inst, Mine Safety Technol Branch, Beijing 100013, Peoples R China
基金
中国博士后科学基金; 北京市自然科学基金; 中国国家自然科学基金;
关键词
Coal; ECBM; Gas adsorption; Functional groups; FTIR; CARBON-DIOXIDE STORAGE; ARGONNE PREMIUM COALS; LATE PERMIAN COALS; FT-IR; SUPERCRITICAL CO2; RANK COALS; SOUTHERN CHINA; GAS-DIFFUSION; MICRO-FTIR; SORPTION;
D O I
10.1016/j.jngse.2017.06.003
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Understanding the mechanism of CO2 and CH4 storage in coals is critical for CO2 sequestration in coal seams with enhanced coalbed methane recovery (CO2-ECBM) and the prevention of mine gas disasters. The primary objective of this study is to investigate the potential chemical interactions of CO2 and CH4 with coal due to high-pressure adsorption. The functional groups of two different-rank coals before and after high-pressure CH4 and CO2 adsorption treatments were studied using Fourier transform infrared spectroscopy (FTIR) spectrometry and curve fitting. The changes in the chemical structure of coal were evaluated using structural parameters derived from FTIR. The coal adsorption treatments were conducted at 40 degrees C and 6 MPa. The results indicate that both coal rank samples underwent functional group and structural parameter changes after high-pressure CO2 and supercritical CH4 adsorption and thus that chemical interactions occur at high pressure. Moreover, the variation law of functional groups is complex due to its dependence on the coal rank and gas type. FTIR spectra of long-flame coal and anthracite coal have clear functional group distribution differences. The amount of oxygen-containing functional groups decreases with the increase in coal rank. This study demonstrates the utility of FTIR spectrometry and curve fitting, to quantitatively evaluate the chemical structure of coal samples. This preliminary study is intended to enrich the theories of gas adsorption in coals, guide applications of CO2-ECBM, and assist in the prevention of mine gas disasters. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:358 / 367
页数:10
相关论文
共 50 条
  • [1] Influence of high-pressure CO2 exposure on adsorption kinetics of methane and CO2 on coals
    Wang, Qianqian
    Li, Wei
    Zhang, Dengfeng
    Wang, Haohao
    Jiang, Wenping
    Zhu, Li
    Tao, Jun
    Huo, Peili
    Zhang, Jin
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2016, 34 : 811 - 822
  • [2] Coal Lithotypes before, during, and after Exposure to CO2: Insights from Direct Fourier Transform Infrared Investigation
    Mastalerz, Maria
    Goodman, Angela
    Chirdon, Danielle
    ENERGY & FUELS, 2012, 26 (06) : 3586 - 3591
  • [3] Influence of CO2 Exposure on High-Pressure Methane and CO2 Adsorption on Various Rank Coals: Implications for CO2 Sequestration in Coal Seams
    Wang, Qianqian
    Zhang, Dengfeng
    Wang, Haohao
    Jiang, Wenping
    Wu, Xiuping
    Yang, Jin
    Huo, Peili
    ENERGY & FUELS, 2015, 29 (06) : 3785 - 3795
  • [4] Effects of Supercritical CO2 Treatment Temperature on Functional Groups and Pore Structure of Coals
    Ge, Zhaolong
    Zeng, Mengru
    Cheng, Yugang
    Wang, Haoming
    Liu, Xianfeng
    SUSTAINABILITY, 2019, 11 (24)
  • [5] The effects of CO2 on organic groups in bituminous coal and high-rank coal via Fourier transform infrared spectroscopy
    Liu, Shiqi
    Sang, Shuxun
    Wang, Tian
    Du, Yi
    Jia, Jinlong
    Fang, Huihuang
    ENERGY EXPLORATION & EXPLOITATION, 2018, 36 (06) : 1566 - 1592
  • [6] Effects of supercritical CO2 extraction on adsorption characteristics of methane on different types of coals
    Kang, Jianhong
    Wan, Ru
    Zhou, Fubao
    Liu, Yingke
    Li, Ziqiang
    Yin, Yongsheng
    CHEMICAL ENGINEERING JOURNAL, 2020, 388 (388)
  • [7] Competitive adsorption of CO2/CH4 on coal: Insights from thermodynamics
    Huang, Kaibo
    Du, Xidong
    Li, Kegang
    Zhou, Junping
    Zhang, Dengfeng
    Abbas, Naeem
    Cheng, Yugang
    Wu, Tengfei
    Liu, Guojun
    He, Chong
    ALEXANDRIA ENGINEERING JOURNAL, 2024, 97 : 114 - 126
  • [8] Supercritical Pure Methane and CO2 Adsorption on Various Rank Coals of China: Experiments and Modeling
    Zhang, Deng-Feng
    Cui, Yong-Jun
    Liu, Bing
    Li, Song-Geng
    Song, Wen-Li
    Lin, Wei-Gang
    ENERGY & FUELS, 2011, 25 (04) : 1891 - 1899
  • [9] Reflection Fourier transform infrared spectroscopy of polymer targets for CO2 laser ablation
    Sinko, John E.
    Schlecht, Clifford A.
    HIGH-POWER LASER ABLATION VII, PTS 1-2, 2008, 7005
  • [10] Influences of dynamic entrainer-blended supercritical CO2 fluid exposure on high-pressure methane adsorption on coals
    Zhang, Dengfeng
    Li, Chao
    Zhang, Jin
    Lun, Zengmin
    Jia, Shuaiqiu
    Luo, Cuijuan
    Jiang, Wenping
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2019, 66 : 180 - 191