Powder fabrication and laser additive manufacturing of MoSiBTiC alloy

被引:30
作者
Zhou, Weiwei [1 ]
Sun, Xiaohao [1 ]
Tsunoda, Kengo [1 ]
Kikuchi, Keiko [1 ]
Nomura, Naoyuki [1 ]
Yoshimi, Kyosuke [2 ]
Kawasaki, Akira [1 ]
机构
[1] Tohoku Univ, Grad Sch Engn, Dept Mat Proc, Sendai, Miyagi 9808579, Japan
[2] Tohoku Univ, Grad Sch Engn, Dept Mat Sci, Sendai, Miyagi 9808579, Japan
基金
日本科学技术振兴机构;
关键词
Laser powder bed fusion (L-PBF); High-energy ball milling (HEBM); Intermetallics; Microstructures; TEMPERATURE MECHANICAL-PROPERTIES; INTERFACIAL REACTIONS; OXIDATION RESISTANCE; TENSILE PROPERTIES; STAINLESS-STEEL; PHASE-STABILITY; MICROSTRUCTURE; COMPOSITES; BEHAVIOR; EVOLUTION;
D O I
10.1016/j.intermet.2018.10.012
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The MoSiBTiC alloy is one promising candidate for ultrahigh-temperature materials. However, it faces severe challenges in the machining of complex shapes because of its significant brittleness, high melting point, and stiffness. To overcome this challenge, we have successfully fabricated MoSiBTiC alloy parts via laser powder bed fusion (L-PBF). A combination of arc-melting and controllable high-energy ball milling (HEBM) was employed to prepare suitable MoSiBTiC powders for L-PBF. The evolution of powder morphology, constituent phases, and laser absorptivity, as well as particle size and distribution during HEBM, was investigated. Moreover, the effects of L-PBF parameters on the densification, microstructure, and mechanical performance of MoSiBTiC alloy builds were studied. A dense MoSiBTiC alloy, mainly consisting of a Mo solid-solution, Mo5SiB2, Mo2C, and TiC phases, was obtained at an energy density of 156 J mm(-3) using the laser power of 70 W. Compared to the as-cast alloy, the L-PBF-processed MoSiBTiC alloy possessed more uniform and finer grain structures, while exhibiting a lower Vickers hardness due to the existence of internal microcracks. It was also proved that the small quantity of ZrO2 particles from HEBM processing was uniformly imbedded in L-PBF builds. This work may offer significant guidance for designing and producing complexly shaped refractory intermetallics with unique microstructures in ultrahigh-temperature applications.
引用
收藏
页码:33 / 42
页数:10
相关论文
共 62 条
[1]   The manufacturing of hard tools from metallic powders by selective laser melting [J].
Abe, F ;
Osakada, K ;
Shiomi, M ;
Uematsu, K ;
Matsumoto, M .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2001, 111 (1-3) :210-213
[2]  
Aboulkhair N. T., 2014, Addit. Manuf, V14, P77, DOI [DOI 10.1016/J.ADDMA.2014.08.001, 10.1016/j.addma.2014.08.001]
[3]   Selective laser melting of TiB2/316L stainless steel composites: The roles of powder preparation and hot isostatic pressing post-treatment [J].
AlMangour, Bandar ;
Grzesiak, Dariusz ;
Yang, Jenn-Ming .
POWDER TECHNOLOGY, 2017, 309 :37-48
[4]   Selective laser melting of in situ titanium-titanium boride composites: Processing, microstructure and mechanical properties [J].
Attar, Hooyar ;
Boenisch, Matthias ;
Calin, Mariana ;
Zhang, Lai-Chang ;
Scudino, Sergio ;
Eckert, Juergen .
ACTA MATERIALIA, 2014, 76 :13-22
[5]   The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy [J].
Carter, Luke N. ;
Martin, Christopher ;
Withers, Philip J. ;
Attallah, Moataz M. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 615 :338-347
[6]   Microstructure, mechanical properties and oxidation resistance of Mo5Si3-Al2O3 composite [J].
Chen, Hui ;
Ma, Qin ;
Shao, Xin ;
Ma, Jie ;
Wang, Changzheng ;
Huang, Baoxu .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 592 :12-18
[7]   Phase stability, microstructural evolution and room temperature mechanical properties of TiO2 doped 8 mol% Y2O3 stabilized ZrO2 (8Y-CSZ) [J].
Chen, Tiandan ;
Tekeli, Suleyman ;
Dillon, Robert P. ;
Mecartney, Martha L. .
CERAMICS INTERNATIONAL, 2008, 34 (02) :365-370
[8]   Tensile behavior of bulk nanocrystalline aluminum synthesized by hot extrusion of ball-milled powders [J].
Choi, H. J. ;
Lee, S. W. ;
Park, J. S. ;
Bae, D. H. .
SCRIPTA MATERIALIA, 2008, 59 (10) :1123-1126
[9]   Mo-Si-B alloys: Developing a revolutionary turbine-engine material [J].
Dimiduk, DM ;
Perepezko, JH .
MRS BULLETIN, 2003, 28 (09) :639-645
[10]   THERMAL EXPANSION OF AL2O3, BEO, MGO, B4C, SIC, AND TIC ABOVE 1000-DEGREES-C [J].
ENGBERG, CJ ;
ZEHMS, EH .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1959, 42 (06) :300-305