A Projected SQP Method for Nonlinear Optimal Control with Quadratic Convergence

被引:0
作者
Bayer, Florian A. [1 ]
Notarstefano, Giuseppe [2 ]
Allgoewer, Frank [1 ]
机构
[1] Univ Stuttgart, Inst Syst Theory & Automat Control, D-70550 Stuttgart, Germany
[2] Univ Salento, Dept Engn, Lecce, Italy
来源
2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC) | 2013年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a discrete-time Sequential Quadratic Programming (SQP) algorithm for nonlinear optimal control problems. Using the idea by Hauser of projecting curves onto the trajectory space, the introduced algorithm has guaranteed recursive feasibility of the dynamic constraints. The second essential feature of the algorithm is a specific choice of the Lagrange multiplier update. Due to this ad hoc choice of the multiplier, the algorithm converges locally quadratically. Finally, we show how the proposed algorithm connects standard SQP methods for nonlinear optimal control with the Projection Operator Newton method by Hauser.
引用
收藏
页码:6463 / 6468
页数:6
相关论文
共 50 条
[31]   A SECOND DERIVATIVE SQP METHOD: GLOBAL CONVERGENCE [J].
Gould, Nicholas I. M. ;
Robinson, Daniel P. .
SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (04) :2023-2048
[32]   A modified SQP method and its global convergence [J].
Che, Jianren ;
Su, Ke .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 186 (02) :945-951
[33]   Optimal control of quadratic functionals for affine nonlinear systems [J].
M.Popescu ;
A.Dumitrache .
Theoretical & Applied Mechanics Letters, 2012, 2 (04) :60-63
[34]   Optimal control of quadratic functionals for affine nonlinear systems [J].
Popescu, M. ;
Dumitrache, A. .
THEORETICAL AND APPLIED MECHANICS LETTERS, 2012, 2 (04) :043010
[35]   On infinite-time nonlinear quadratic optimal control [J].
Chen, Y ;
Edgar, T ;
Manousiouthakis, V .
42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, :221-226
[36]   On infinite-time nonlinear quadratic optimal control [J].
Chen, Y ;
Edgar, T ;
Manousiouthakis, V .
SYSTEMS & CONTROL LETTERS, 2004, 51 (3-4) :259-268
[37]   Linear quadratic optimal control of singular nonlinear systems [J].
Zhu, JD ;
Zhu, SQ ;
Cheng, ZL .
PROCEEDINGS OF THE 41ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 2002, :2698-2699
[38]   A Formal Solution of the Quadratic Optimal Control for Nonlinear Systems [J].
Rusnak, Ilan ;
Levy, Maital .
2021 29TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2021, :1019-1023
[39]   A feasible SQP method for nonlinear programming [J].
Zhu, Zhibin ;
Zhang, Weidong ;
Geng, Zhenjie .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 215 (11) :3956-3969
[40]   Dual convergence of the legendre pseudospectral method for solving nonlinear constrained optimal control problems [J].
Gong, Q ;
Ross, IM ;
Kang, W ;
Fahroo, F .
PROCEEDINGS OF THE EIGHTH IASTED INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND CONTROL, 2005, :431-436