V2O5 nanocrystals: Chemical solution synthesis, hydrogen thermal treatment and enhanced rate capability as cathode materials for lithium-ion batteries

被引:7
|
作者
Huang, Xinlin [1 ]
Li, Xinlong [1 ]
Chen, Yuanzhi [1 ]
Mei, Jie [1 ]
Xu, Wanjie [1 ]
Wang, Laisen [1 ]
Peng, Dong-Liang [1 ]
机构
[1] Xiamen Univ, Coll Mat, Collaborat Innovat Ctr Chem Energy Mat, Dept Mat Sci & Engn,State Key Lab Phys Chem Solid, Xiamen 361005, Peoples R China
基金
国家重点研发计划;
关键词
Vanadium pentoxide; Nanocrystals; Oxygen vacancies; Chemical synthesis; Lithium-ion batteries; TEMPLATE-FREE SYNTHESIS; HOLLOW MICROSPHERES; OXYGEN VACANCIES; HIGH-CAPACITY; PERFORMANCE; CARBON; SUPERCAPACITOR; NANOCOMPOSITE; TEMPERATURE; NANOBELTS;
D O I
10.1016/j.jallcom.2021.161360
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Vanadium pentoxide (V2O5) is regarded as a promising cathode material for high-performance lithium-ion batteries (LIBs). In this study, V2O5 nanocrystals with an elongated plate-like morphology are prepared via a chemical solution approach that involves the hydrolyzation of vanadyl sulfate in alkaline solution. Oxygen vacancies are intentionally created by thermal treating the V2O5 samples under hydrogen-containing gases at different temperatures. Although the annealing process does not change the shape, morphology and crystalline structure of V2O5 nanocrystals, it does bring about a small amount of oxygen vacancies, as evidently from the results of XRD patterns and Raman spectra. The presence of oxygen vacancies has positive effects on the electrochemical properties. A higher initial discharge capacity, and excellent rate capability and cycling stability are observed on the oxygen vacancy-containing V2O5 samples. Especially, the sample annealed at 350 degrees C is found to have an initial capacity of 284 mAh g(-1) and the capacity still maintains at about 153 mAh g(-1) even at 10 C. The combination of nanoscale dimension and oxygen vacancies in V2O5 nanocrystals presents a simple way to improve their rate capability and cycling stability for potential highperformance LIB applications. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] The mechanical hybrid of V2O5 microspheres/graphene as an excellent cathode for lithium-ion batteries
    Chen, Angkang
    Li, Chonggui
    Zhang, Chaomin
    Li, Wenyao
    Yang, Qi
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2022, 26 (03) : 729 - 738
  • [22] Nanofibers of V2O5/C@MWCNTs as the cathode material for lithium-ion batteries
    Yindan Liu
    Guohua Gao
    Xing Liang
    Guangming Wu
    Journal of Solid State Electrochemistry, 2018, 22 : 2385 - 2393
  • [23] Electrospun V2O5 Nanostructures with Controllable Morphology as High-Performance Cathode Materials for Lithium-Ion Batteries
    Wang, Heng-guo
    Ma, De-Long
    Huang, Yun
    Zhang, Xin-bo
    CHEMISTRY-A EUROPEAN JOURNAL, 2012, 18 (29) : 8987 - 8993
  • [24] Graphene/V2O5 Cryogel Composite As a High-Energy Cathode Material For Lithium-Ion Batteries
    Maroni, Fabio
    Birrozzi, Agnese
    Carbonari, Gilberto
    Croce, Fausto
    Tossici, Roberto
    Passerini, Stefano
    Nobili, Francesco
    CHEMELECTROCHEM, 2017, 4 (03): : 613 - 619
  • [25] Coral-like V2O5 nanowhiskers as high-capacity cathode materials for lithium-ion batteries
    Wang, Bei
    Wang, Ying
    Sun, Bing
    Munroe, Paul
    Wang, Guoxiu
    RSC ADVANCES, 2013, 3 (15): : 5069 - 5075
  • [26] An investigation of V2O5/polypyrrole composite cathode materials for lithium-ion batteries synthesized by sol-gel
    Ren, Xiangzhong
    Shi, Chuan
    Zhang, Peixin
    Jiang, Yingkai
    Liu, Jianhong
    Zhang, Qianling
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2012, 177 (12): : 929 - 934
  • [27] Enhanced Electrochemical Properties of Sn-doped V2O5 as a Cathode Material for Lithium Ion Batteries
    Li, Zhuoyu
    Zhang, Changkun
    Liu, Chaofeng
    Fu, Haoyu
    Nan, Xihui
    Wang, Kan
    Li, Xinyuan
    Ma, Wenda
    Lu, Xianmao
    Cao, Guozhong
    ELECTROCHIMICA ACTA, 2016, 222 : 1831 - 1838
  • [28] Electrochemical performance of the nanostructured biotemplated V2O5 cathode for lithium-ion batteries
    Pomerantseva, Ekaterina
    Gerasopoulos, Konstantinos
    Chen, Xinyi
    Rubloff, Gary
    Ghodssi, Reza
    JOURNAL OF POWER SOURCES, 2012, 206 : 282 - 287
  • [29] Graphene Nanoribbon/V2O5 Cathodes in Lithium-Ion Batteries
    Yang, Yang
    Li, Lei
    Fei, Huilong
    Peng, Zhiwei
    Ruan, Gedeng
    Tour, James M.
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (12) : 9590 - 9594
  • [30] Template-free synthesis of porous V2O5 yolk-shell microspheres as cathode materials for lithium ion batteries
    Dou, Yafang
    Liang, Xing
    Gao, Guohua
    Wu, Guangming
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 735 : 109 - 116