Personalized Respiratory Motion Model Using Conditional Generative Networks for MR-Guided Radiotherapy

被引:1
|
作者
Romaguera, Liset Vazquez [1 ]
Mezheritsky, Tal [1 ]
Kadoury, Samuel [1 ,2 ]
机构
[1] Polytech Montreal, MedICAL, Montreal, PQ, Canada
[2] CHUM Res Ctr, Montreal, PQ, Canada
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT IV | 2021年 / 12904卷
基金
加拿大自然科学与工程研究理事会;
关键词
Image-guided radiotherapy; Motion modelling; 4D MRI; Generative model; Conditional variational autoencoders; ORGAN MOTION; PREDICTION; LIVER;
D O I
10.1007/978-3-030-87202-1_23
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
MRI-guided radiotherapy systems enable real-time 2D cine acquisitions for target monitoring, but cannot provide volumetric information due to spatio-temporal constraints. Hence, respiratory motion models coupled with a temporal predictive mechanism are a suitable solution to enable ahead-of-time 3D tumor and anatomy tracking in combination with real-time online plan adaptation. We propose a novel subject-specific probabilistic model to enable 3D-ht predictions from image-based surrogates during radiotherapy treatments. The model is trained end-to-end to simultaneously capture and learn a distribution of realistic motion fields over a population dataset. Furthermore, the distribution is conditioned on a sequence of partial observations, which can be extrapolated in time using a seq2seq inspired mechanism allowing for scalable predictive horizon. Based on the generative properties of conditional variational autoencoders, it integrates anatomical features and temporal information to construct an interpretable latent space with respiratory phase discrimination. The choice of a probabilistic framework allows improving uncertainty estimation during the volume generation phase. Experimental validation on 25 subjects demonstrates the potential of the proposed model, which achieves a mean landmark error of 1.4 +/- 1.1 mm, yielding statistically significant improvements over state-of-the-art methods.
引用
收藏
页码:238 / 248
页数:11
相关论文
共 50 条
  • [41] Medical physics challenges in clinical MR-guided radiotherapy
    Kurz, Christopher
    Buizza, Giulia
    Landry, Guillaume
    Kamp, Florian
    Rabe, Moritz
    Paganelli, Chiara
    Baroni, Guido
    Reiner, Michael
    Keall, Paul J.
    van den Berg, Cornelis A. T.
    Riboldi, Marco
    RADIATION ONCOLOGY, 2020, 15 (01)
  • [42] MR-Guided Adaptive Radiotherapy in Localized Prostate Cancer
    Allegra, Andrea Gaetano
    Nicosia, Luca
    Rigo, Michele
    Bianchi, Nicola
    Borgese, Riccardo Filippo
    De Simone, Antonio
    Giaj-Levra, Niccolo
    Gurrera, Davide
    Naccarato, Stefania
    Pastorello, Edoardo
    Ricchetti, Francesco
    Sicignano, Gianluisa
    Ruggieri, Ruggero
    Alongi, Filippo
    TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2025, 24
  • [43] MR-Guided Radiotherapy: Magnetic Field Dose Effects
    Raaijmakers, A. J. E.
    Raaymakers, B. W.
    Lagendijk, J. J. W.
    MEDICAL PHYSICS, 2008, 35 (06)
  • [44] The impact of rectal spacers in MR-guided adaptive radiotherapy
    Batumalai, Vikneswary
    Crawford, David
    Picton, Maddison
    Tran, Charles
    Jelen, Urszula
    Carr, Madeline
    Jameson, Michael
    de Leon, Jeremy
    CLINICAL AND TRANSLATIONAL RADIATION ONCOLOGY, 2024, 49
  • [45] Evaluation of Delivered Dose Using Synthetic CT for MR-Guided and CT-Guided Radiotherapy
    Wang, H.
    MEDICAL PHYSICS, 2022, 49 (06) : E756 - E757
  • [46] Image-driven, model-based 3D abdominal motion estimation for MR-guided radiotherapy
    Stemkens, Bjorn
    Tijssen, Rob H. N.
    de Senneville, Baudouin Denis
    Lagendijk, Jan J. W.
    van den Berg, Cornelis A. T.
    PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (14): : 5335 - 5355
  • [47] Patient Experience of MR-guided Radiotherapy using a 1.5T MR-Linac
    Westerhoff, J.
    van Otterloo, S. de Mol
    Leer, T.
    Daamen, L.
    Rutgers, R.
    Meijers, L.
    Intven, M.
    Verkooijen, H.
    RADIOTHERAPY AND ONCOLOGY, 2022, 170 : S109 - S110
  • [48] Preliminary experience using MR-guided adaptive radiotherapy in head and neck cancer
    Atienza, Caiden
    Shepard, Andrew
    Uzomah, Uwajachukwumma
    Rajan, Shri Kiriti
    Anderson, Carryn M.
    Katzer, Joel
    Rusu, Samuel
    St-Aubin, Joel
    Smith, Blake
    Hyer, Daniel
    FRONTIERS IN ONCOLOGY, 2024, 14
  • [49] Simultaneous motion monitoring and truth-in-delivery analysis imaging framework for MR-guided radiotherapy
    Mickevicius, Nikolai J.
    Chen, Xinfeng
    Boyd, Zachary
    Lee, Hannah J.
    Ibbott, Geoffrey S.
    Paulson, Eric S.
    PHYSICS IN MEDICINE AND BIOLOGY, 2018, 63 (23):
  • [50] Accuracy of DIR-based intra-fraction motion management in MR-guided radiotherapy
    Palacios, M. A.
    Gerganov, G.
    Cobussen, P.
    Tetar, S. U.
    Finazzi, T.
    Slotman, B. J.
    Senan, S.
    Haasbeek, C. J.
    Kawrakow, I.
    RADIOTHERAPY AND ONCOLOGY, 2022, 170 : S1495 - S1496