Personalized Respiratory Motion Model Using Conditional Generative Networks for MR-Guided Radiotherapy

被引:1
|
作者
Romaguera, Liset Vazquez [1 ]
Mezheritsky, Tal [1 ]
Kadoury, Samuel [1 ,2 ]
机构
[1] Polytech Montreal, MedICAL, Montreal, PQ, Canada
[2] CHUM Res Ctr, Montreal, PQ, Canada
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT IV | 2021年 / 12904卷
基金
加拿大自然科学与工程研究理事会;
关键词
Image-guided radiotherapy; Motion modelling; 4D MRI; Generative model; Conditional variational autoencoders; ORGAN MOTION; PREDICTION; LIVER;
D O I
10.1007/978-3-030-87202-1_23
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
MRI-guided radiotherapy systems enable real-time 2D cine acquisitions for target monitoring, but cannot provide volumetric information due to spatio-temporal constraints. Hence, respiratory motion models coupled with a temporal predictive mechanism are a suitable solution to enable ahead-of-time 3D tumor and anatomy tracking in combination with real-time online plan adaptation. We propose a novel subject-specific probabilistic model to enable 3D-ht predictions from image-based surrogates during radiotherapy treatments. The model is trained end-to-end to simultaneously capture and learn a distribution of realistic motion fields over a population dataset. Furthermore, the distribution is conditioned on a sequence of partial observations, which can be extrapolated in time using a seq2seq inspired mechanism allowing for scalable predictive horizon. Based on the generative properties of conditional variational autoencoders, it integrates anatomical features and temporal information to construct an interpretable latent space with respiratory phase discrimination. The choice of a probabilistic framework allows improving uncertainty estimation during the volume generation phase. Experimental validation on 25 subjects demonstrates the potential of the proposed model, which achieves a mean landmark error of 1.4 +/- 1.1 mm, yielding statistically significant improvements over state-of-the-art methods.
引用
收藏
页码:238 / 248
页数:11
相关论文
共 50 条
  • [31] reconstructing the dosimetric impact of intra-fractional prostate motion in MR-guided radiotherapy
    Xiong, Y.
    Rabe, M.
    Nierer, L.
    Corradini, S.
    Belka, C.
    Riboldi, M.
    Landry, G.
    Kurz, C.
    RADIOTHERAPY AND ONCOLOGY, 2022, 170 : S186 - S187
  • [32] Novel Simultaneous Motion Monitoring and Truth in Delivery Analysis Framework for MR-Guided Radiotherapy
    Mickevicius, Nikolai J.
    Chen, Xinfeng
    Boyd, Zachary R. L.
    Lee, Hannah J.
    Ibbott, Geoffrey S.
    Paulson, Eric S.
    MEDICAL PHYSICS, 2018, 45 (06) : E633 - E633
  • [33] Target Deformation and Intrafraction Motion Errors in LRCTV for MR-guided Cervix Cancer Radiotherapy
    Tan, I. Z.
    Tocco, B.
    Court, S.
    Tang, D. C. S.
    McQuaid, D.
    White, I.
    Lalondrelle, S.
    RADIOTHERAPY AND ONCOLOGY, 2021, 161 : S1061 - S1062
  • [34] Automatic Organ Contouring for Head and Neck MR-Guided Online Adaptive Radiotherapy Using Neural Networks
    Koteva, V.
    Mcquaid, D.
    Dunlop, A.
    Eiben, B.
    Oelfke, U.
    MEDICAL PHYSICS, 2022, 49 (06) : E276 - E276
  • [35] Optimizing MR-Guided Radiotherapy for Breast Cancer Patients
    Koerkamp, Maureen L. Groot
    Vasmel, Jeanine E.
    Russell, Nicola S.
    Shaitelman, Simona F.
    Anandadas, Carmel N.
    Currey, Adam
    Vesprini, Danny
    Keller, Brian M.
    De-Colle, Chiara
    Han, Kathy
    Braunstein, Lior Z.
    Mahmood, Faisal
    Lorenzen, Ebbe L.
    Philippens, Marielle E. P.
    Verkooijen, Helena M.
    Lagendijk, Jan J. W.
    Houweling, Antonetta C.
    van den Bongard, H. J. G. Desiree
    Kirby, Anna M.
    FRONTIERS IN ONCOLOGY, 2020, 10
  • [36] Role of MR-guided Radiotherapy (MRgRT) in Colorectal Cancer
    van Dams, Ritchell
    Raldow, Ann C.
    Lee, Percy
    CURRENT COLORECTAL CANCER REPORTS, 2021, 17 (05) : 69 - 76
  • [37] Medical physics challenges in clinical MR-guided radiotherapy
    Christopher Kurz
    Giulia Buizza
    Guillaume Landry
    Florian Kamp
    Moritz Rabe
    Chiara Paganelli
    Guido Baroni
    Michael Reiner
    Paul J. Keall
    Cornelis A. T. van den Berg
    Marco Riboldi
    Radiation Oncology, 15
  • [38] Practical guidelines of online MR-guided adaptive radiotherapy
    Okamoto, Hiroyuki
    Igaki, Hiroshi
    Chiba, Takahito
    Shibuya, Keiko
    Sakasai, Tatsuya
    Jingu, Keiichi
    Inaba, Koji
    Kuroda, Kagayaki
    Aoki, Shigeki
    Tatsumi, Daisaku
    Nakamura, Mitsuhiro
    Kadoya, Noriyuki
    Furuyama, Yoshinobu
    Kumazaki, Yu
    Tohyama, Naoki
    Tsuneda, Masato
    Nishioka, Shie
    Itami, Jun
    Onishi, Hiroshi
    Shigematsu, Naoyuki
    Uno, Takashi
    JOURNAL OF RADIATION RESEARCH, 2022, 63 (05) : 730 - 740
  • [39] Online MR-guided radiotherapy - Adaptation by size or function
    Bhide, S.
    RADIOTHERAPY AND ONCOLOGY, 2020, 152 : S422 - S422
  • [40] Online rotation correction for MR-guided prostate radiotherapy
    Van den Wollenberg, W.
    Carbaat, C.
    De Ruiter, P.
    Remeijer, P.
    Janssen, T.
    Sonke, J.
    RADIOTHERAPY AND ONCOLOGY, 2019, 133 : S1096 - S1097