Personalized Respiratory Motion Model Using Conditional Generative Networks for MR-Guided Radiotherapy

被引:1
|
作者
Romaguera, Liset Vazquez [1 ]
Mezheritsky, Tal [1 ]
Kadoury, Samuel [1 ,2 ]
机构
[1] Polytech Montreal, MedICAL, Montreal, PQ, Canada
[2] CHUM Res Ctr, Montreal, PQ, Canada
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT IV | 2021年 / 12904卷
基金
加拿大自然科学与工程研究理事会;
关键词
Image-guided radiotherapy; Motion modelling; 4D MRI; Generative model; Conditional variational autoencoders; ORGAN MOTION; PREDICTION; LIVER;
D O I
10.1007/978-3-030-87202-1_23
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
MRI-guided radiotherapy systems enable real-time 2D cine acquisitions for target monitoring, but cannot provide volumetric information due to spatio-temporal constraints. Hence, respiratory motion models coupled with a temporal predictive mechanism are a suitable solution to enable ahead-of-time 3D tumor and anatomy tracking in combination with real-time online plan adaptation. We propose a novel subject-specific probabilistic model to enable 3D-ht predictions from image-based surrogates during radiotherapy treatments. The model is trained end-to-end to simultaneously capture and learn a distribution of realistic motion fields over a population dataset. Furthermore, the distribution is conditioned on a sequence of partial observations, which can be extrapolated in time using a seq2seq inspired mechanism allowing for scalable predictive horizon. Based on the generative properties of conditional variational autoencoders, it integrates anatomical features and temporal information to construct an interpretable latent space with respiratory phase discrimination. The choice of a probabilistic framework allows improving uncertainty estimation during the volume generation phase. Experimental validation on 25 subjects demonstrates the potential of the proposed model, which achieves a mean landmark error of 1.4 +/- 1.1 mm, yielding statistically significant improvements over state-of-the-art methods.
引用
收藏
页码:238 / 248
页数:11
相关论文
共 50 条
  • [1] Offline and online LSTM networks for respiratory motion prediction in MR-guided radiotherapy
    Lombardo, Elia
    Rabe, Moritz
    Xiong, Yuqing
    Nierer, Lukas
    Cusumano, Davide
    Placidi, Lorenzo
    Boldrini, Luca
    Corradini, Stefanie
    Niyazi, Maximilian
    Belka, Claus
    Riboldi, Marco
    Kurz, Christopher
    Landry, Guillaume
    PHYSICS IN MEDICINE AND BIOLOGY, 2022, 67 (09):
  • [2] Respiratory motion modelling for MR-guided lung cancer radiotherapy: model development and geometric accuracy evaluation
    Eiben, Bjorn
    Bertholet, Jenny
    Tran, Elena H.
    Wetscherek, Andreas
    Shiarli, Anna-Maria
    Nill, Simeon
    Oelfke, Uwe
    McClelland, Jamie R.
    PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (05):
  • [3] Respiratory Motion Management Using Compression Belt for MR-Guided Stereotactic Body Radiotherapy of Kidney Cancer
    Zhao, Y.
    Yang, J.
    Perles, L. A.
    Reiazi, R.
    Chen, X.
    Prajapati, S.
    Subashi, E.
    Mohammedsaid, M.
    Yu, Z. H.
    Brock, K. K.
    Wang, J.
    Mohamad, O.
    Hassanzadeh, C.
    Choi, S.
    Mok, H.
    Tang, C.
    Ding, Y.
    MEDICAL PHYSICS, 2024, 51 (10) : 7908 - 7908
  • [4] Toward Real-Time MR-Guided Adaptive Radiotherapy Planning Using a Deep Convolutional Conditional Generative Adversarial Network
    Buchanan, L.
    Zhang, Y.
    Chen, X.
    Ceballos, F.
    Liang, Y.
    Li, X.
    MEDICAL PHYSICS, 2020, 47 (06) : E665 - E666
  • [5] Fast contour propagation for MR-guided prostate radiotherapy using convolutional networks
    Eppenhof, K. A.
    Maspero, M.
    Savenije, M. H.
    De Boer, H. C.
    van Zyp, J. R. Van der Voort
    Raaymakers, B. B.
    Raaijmakers, A. J.
    Veta, M.
    Pluim, J. P.
    Van den Berg, C. A.
    RADIOTHERAPY AND ONCOLOGY, 2020, 152 : S887 - S887
  • [6] Intra-Fraction Motion Prediction in MR-Guided Radiotherapy Using Markov Modeling
    Mirzapour, A.
    Mazur, T.
    Sharp, G.
    Salari, E.
    MEDICAL PHYSICS, 2018, 45 (06) : E632 - E633
  • [7] Assessment of setup errors and internal motion for rectal cancer using MR-guided radiotherapy
    Everaert, T.
    Ruiz, A. Gutierrez
    Kamel, R. Atef
    Bezuidenhout, J. Bodenst
    Smeulders, J.
    Gevaert, T.
    De Ridder, M.
    RADIOTHERAPY AND ONCOLOGY, 2023, 182 : S1615 - S1616
  • [8] The mesorectum motion using MR-guided Radiotherapy: an exploratory study to quantify PTV margins
    Romano, A.
    Chiloiro, G.
    Boldrini, L.
    Cusumano, D.
    Placidi, L.
    Antonelli, M. V.
    Pollutri, V.
    Votta, C.
    Gambacorta, M. A.
    Valentini, V.
    RADIOTHERAPY AND ONCOLOGY, 2020, 152 : S914 - S914
  • [9] Improvement of respiratory motion monitoring using SENSE and Compressed SENSE for MR-guided RT
    Ho, Y.
    Wong, O. L.
    Yuan, J.
    Zhou, Y.
    Cheung, K. Y.
    Yu, S. K.
    RADIOTHERAPY AND ONCOLOGY, 2020, 152 : S402 - S402
  • [10] A pilot study of respiratory motion characterization in the abdomen using a fast volumetric 4D-MRI for MR-guided radiotherapy
    Wong, Oi Lei
    Law, Max Wai Kong
    Poon, Darren Ming Chun
    Yung, Raymond Wai Hung
    Yu, Siu ki
    Cheung, Kin yin
    Yuan, Jing
    PRECISION RADIATION ONCOLOGY, 2022, 6 (02): : 100 - 109