Two-dimensional force-free magnetic fields described by some nonlinear equations

被引:12
作者
Khater, A. H. [1 ]
Callebaut, D. K. [2 ]
Abdelkawy, M. A. [1 ]
机构
[1] Beni Suef Univ, Dept Math, Fac Sci, Bani Suwayf 62511, Egypt
[2] Univ Antwerp, Dept Phys, CGB, B-2020 Antwerp, Belgium
关键词
SOLITARY WAVE SOLUTIONS; BACKLUND-TRANSFORMATIONS; EVOLUTION-EQUATIONS; PAINLEVE ANALYSIS; TANH METHOD; RELAXATION; STABILITY; PLASMA;
D O I
10.1063/1.3520065
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A force-free magnetic field arises as a special case in the magnetostatic equation in plasmas when only the magnetic energy density is relevant while all other energy densities are negligible and so only the magnetic pressure is considered. In this article, we find the exact solutions of two-dimensional force-free magnetic fields described by Liouville, sine, double sine, sinh-Poisson, and power force-free magnetic equations. We use the generalized tanh method. In all those cases, the ratio of the current density and the magnetic field is not constant as it happens, e.g., in the solar atmosphere. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3520065]
引用
收藏
页数:10
相关论文
共 50 条
  • [41] ALTERNATING DIRECTION IMPLICIT SCHEMES FOR THE TWO-DIMENSIONAL TIME FRACTIONAL NONLINEAR SUPER-DIFFUSION EQUATIONS
    Huang, Jianfei
    Zhao, Yue
    Arshad, Sadia
    Li, Kuangying
    Tang, Yifa
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2019, 37 (03) : 297 - 315
  • [42] ERGODICITY OF THE TWO-DIMENSIONAL MAGNETIC BENARD PROBLEM
    Yamazaki, Kazuo
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [43] Propagation of solitons in a two-dimensional nonlinear square lattice
    Zaera, Ramon
    Vila, Javier
    Fernandez-Saez, Jose
    Ruzzene, Massimo
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2018, 106 : 188 - 204
  • [44] Relaxation of variational problems in two-dimensional nonlinear elasticity
    Hafsa, Omar Anza
    Mandallena, Jean-Philippe
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2007, 186 (01) : 187 - 198
  • [45] Nonlinear oscillations in a two-dimensional spatially periodic flow
    Kalashnik, M. V.
    Kurgansky, M. V.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (02)
  • [46] Relaxation of variational problems in two-dimensional nonlinear elasticity
    Omar Anza Hafsa
    Jean-Philippe Mandallena
    Annali di Matematica Pura ed Applicata, 2007, 186 : 185 - 196
  • [47] Nonmodal nonlinear route of transition to two-dimensional turbulence
    Sengupta, Aditi
    Sundaram, Prasannabalaji
    Sengupta, Tapan K.
    PHYSICAL REVIEW RESEARCH, 2020, 2 (01):
  • [48] The interaction of nonlinear waves in two-dimensional dust crystals
    Jiang Hong
    Yang Xiao-Xia
    Lin Mai-Mai
    Shi Yu-Ren
    Duan Wen-Shan
    CHINESE PHYSICS B, 2011, 20 (01)
  • [49] Nonlinear beam tapering and two-dimensional ring solitons
    Mezentsev, V. K.
    Podivilov, E.
    Vaseva, I. A.
    Fedoruk, M. P.
    Rubenchik, A. M.
    Turitsyn, S. K.
    PHYSICAL REVIEW E, 2022, 106 (05)
  • [50] Transverse nonlinear instability for two-dimensional dispersive models
    Rousset, F.
    Tzvetkov, N.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (02): : 477 - 496