Two-dimensional force-free magnetic fields described by some nonlinear equations

被引:12
作者
Khater, A. H. [1 ]
Callebaut, D. K. [2 ]
Abdelkawy, M. A. [1 ]
机构
[1] Beni Suef Univ, Dept Math, Fac Sci, Bani Suwayf 62511, Egypt
[2] Univ Antwerp, Dept Phys, CGB, B-2020 Antwerp, Belgium
关键词
SOLITARY WAVE SOLUTIONS; BACKLUND-TRANSFORMATIONS; EVOLUTION-EQUATIONS; PAINLEVE ANALYSIS; TANH METHOD; RELAXATION; STABILITY; PLASMA;
D O I
10.1063/1.3520065
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A force-free magnetic field arises as a special case in the magnetostatic equation in plasmas when only the magnetic energy density is relevant while all other energy densities are negligible and so only the magnetic pressure is considered. In this article, we find the exact solutions of two-dimensional force-free magnetic fields described by Liouville, sine, double sine, sinh-Poisson, and power force-free magnetic equations. We use the generalized tanh method. In all those cases, the ratio of the current density and the magnetic field is not constant as it happens, e.g., in the solar atmosphere. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3520065]
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Two-dimensional solitons in nonlinear lattices
    Kartashov, Yaroslav V.
    Malomed, Boris A.
    Vysloukh, Victor A.
    Torner, Lluis
    OPTICS LETTERS, 2009, 34 (06) : 770 - 772
  • [22] One-Dimensional Vlasov-Maxwell Equilibrium for the Force-Free Harris Sheet
    Harrison, Michael G.
    Neukirch, Thomas
    PHYSICAL REVIEW LETTERS, 2009, 102 (13)
  • [23] Stabilization Effect of Magnetic Fields on Two-Dimensional Compressible Current-Vortex Sheets
    Wang, Ya-Guang
    Yu, Fang
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 208 (02) : 341 - 389
  • [24] Effect of magnetic field and friction force on the velocity autocorrelation in two-dimensional Yukawa liquids
    Dzhumagulova, Karlygash N.
    Masheyeva, Ranna U.
    Ramazanov, Tlekkabul S.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2019, 59 (06)
  • [25] Stability for two-dimensional singular discrete systems described by general model
    Zou, Yun
    Xu, Huiling
    Wang, Weiqun
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2008, 19 (02) : 219 - 229
  • [26] Propagating two-dimensional magnetic droplets
    Hoefer, M. A.
    Sommacal, M.
    PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (09) : 890 - 901
  • [27] Stability for two-dimensional singular discrete systems described by general model
    Yun Zou
    Huiling Xu
    Weiqun Wang
    Multidimensional Systems and Signal Processing, 2008, 19 : 219 - 229
  • [28] Collapse dynamics for two-dimensional space-time nonlocal nonlinear Schrödinger equations
    Cole, Justin T.
    Aurko, Abdullah M.
    Musslimani, Ziad H.
    NONLINEARITY, 2024, 37 (04)
  • [29] A linearized ADI scheme for two-dimensional time-space fractional nonlinear vibration equations
    Zhang, Jingna
    Huang, Jianfei
    Aleroev, Temirkhan S.
    Tang, Yifa
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2021, 98 (12) : 2378 - 2392
  • [30] Nonlinear dynamics of two-dimensional undercompressive shocks
    Bowen, M
    Sur, J
    Bertozzi, AL
    Behringer, RP
    PHYSICA D-NONLINEAR PHENOMENA, 2005, 209 (1-4) : 36 - 48