Transcriptomic and Metabolomic Analyses Provide Insights Into an Aberrant Tissue of Tea Plant (Camellia sinensis)

被引:7
作者
Liu, Ding-Ding [1 ]
Wang, Jun-Ya [1 ]
Tang, Rong-Jin [1 ]
Chen, Jie-Dan [1 ]
Liu, Zhen [2 ]
Chen, Liang [1 ]
Yao, Ming-Zhe [1 ]
Ma, Chun-Lei [1 ]
机构
[1] Chinese Acad Agr Sci, Key Lab Tea Biol & Resources Utilizat, Minist Agr & Rural Affairs, Tea Res Inst, Hangzhou, Peoples R China
[2] Hunan Acad Agr Sci, Tea Res Inst, Changsha, Peoples R China
来源
FRONTIERS IN PLANT SCIENCE | 2021年 / 12卷
基金
美国国家科学基金会;
关键词
aberrant tissue; Camellia sinensis; metabolome; special bud; transcriptome; LIGNIN BIOSYNTHESIS; DOWN-REGULATION; SALICYLIC-ACID; CELL-DEATH; ARABIDOPSIS-THALIANA; DISEASE RESISTANCE; BOTRYTIS-CINEREA; REDUCED LIGNIN; ALFALFA; ACCUMULATION;
D O I
10.3389/fpls.2021.730651
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Tea plant (Camellia sinensis (L.) O. Kuntze) is one of the most important economic crops with multiple mutants. Recently, we found a special tea germplasm that has an aberrant tissue on its branches. To figure out whether this aberrant tissue is associated with floral bud (FB) or dormant bud (DB), we performed tissue section, transcriptome sequencing, and metabolomic analysis of these tissues. Longitudinal sections indicated the aberrant tissue internal structure was more like a special bud (SB), but was similar to that of DB. Transcriptome data analysis showed that the number of heterozygous and homozygous SNPs was significantly different in the aberrant tissue compared with FB and DB. Further, by aligning the unmapped sequences of the aberrant tissue to the Non-Redundant Protein Sequences (NR) database, we observed that 36.13% of unmapped sequences were insect sequences, which suggested that the aberrant tissue might be a variation of dormant bud tissue influenced by the interaction of tea plants and insects or pathogens. Metabolomic analysis showed that the differentially expressed metabolites (DEMs) between the aberrant tissue and DB were significantly enriched in the metabolic pathways of biosynthesis of plant hormones and biosynthesis of phenylpropanoids. Subsequently, we analyzed the differentially expressed genes (DEGs) in the above mentioned two tissues, and the results indicated that photosynthetic capacity in the aberrant tissue was reduced, whereas the ethylene, salicylic acid and jasmonic acid signaling pathways were activated. We speculated that exogenous infection induced programmed cell death (PCD) and increased the lignin content in dormant buds of tea plants, leading to the formation of this aberrant tissue. This study advanced our understanding of the interaction between plants and insects or pathogens, providing important clues about biotic stress factors and key genes that lead to mutations and formation of the aberrant tissue.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Metabolomic and Transcriptomic Analyses Reveal the Characteristics of Tea Flavonoids and Caffeine Accumulation and Regulation between Chinese Varieties (Camellia sinensis var. sinensis) and Assam Varieties (C. sinensis var. assamica)
    Tang, Hao
    Zhang, Man
    Liu, Jiayu
    Cai, Jiao
    GENES, 2022, 13 (11)
  • [32] Integrated physiological, metabolomic and transcriptomic analyses provide insights into the roles of exogenous melatonin in promoting rice seed germination under salt stress
    Huangfu, Liexiang
    Zhang, Zihui
    Zhou, Yong
    Zhang, Enying
    Chen, Rujia
    Fang, Huimin
    Li, Pengcheng
    Xu, Yang
    Yao, Youli
    Zhu, Minyan
    Yin, Shuangyi
    Xu, Chenwu
    Lu, Yue
    Yang, Zefeng
    PLANT GROWTH REGULATION, 2021, 95 (01) : 19 - 31
  • [33] Comparative transcriptomic and metabolomic analyses provide insights into the responses to NaCl and Cd stress in Tamarix hispida
    Xie, Qingjun
    Liu, Baichao
    Dong, Wenfang
    Li, Jinghang
    Wang, Danni
    Liu, Zhongyuan
    Gao, Caiqiu
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 884
  • [34] Metabolomic and transcriptomic analyses provide insights into variations in flavonoids contents between two Artemisia cultivars
    Yuchen Qiao
    Liqin Wu
    Suling Yang
    Qing Wang
    Haike Gu
    Liqin Wei
    Guijun Liu
    Sijing Zhou
    Ping Wang
    Meifang Song
    BMC Plant Biology, 23
  • [35] Flavonoid metabolites in tea plant (Camellia sinensis) stress response: Insights from bibliometric analysis
    Li, YunFei
    Chen, YiQin
    Chen, JiaHao
    Shen, ChengWen
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2023, 202
  • [36] Comparative metabolomic analysis reveals the involvement of catechins in adaptation mechanism to cold stress in tea plant (Camellia sinensis var. sinensis)
    Wang, Lu
    Di, Taimei
    Peng, Jing
    Li, Yuteng
    Li, Nana
    Hao, Xinyuan
    Ding, Changqing
    Huang, Jianyan
    Zeng, Jianming
    Yang, Yajun
    Wang, Xinchao
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2022, 201
  • [37] Insights into the Metabolite Profiles of Two Camellia (Theaceae) Species in Yunnan Province through Metabolomic and Transcriptomic Analysis
    Niu, Miao
    Li, Ranyang
    Li, Xiongyu
    Yang, Hongyan
    Ding, Jianliang
    Zhou, Xianxiu
    He, Yuqi
    Xu, Yawen
    Qu, Qian
    Liu, Zhiwei
    Li, Jiahua
    BIOMOLECULES, 2024, 14 (09)
  • [38] Physiological and Transcriptome Analyses Reveal the Protective Effect of Exogenous Trehalose in Response to Heat Stress in Tea Plant (Camellia sinensis)
    Zheng, Shizhong
    Liu, Chufei
    Zhou, Ziwei
    Xu, Liyi
    Lai, Zhongxiong
    PLANTS-BASEL, 2024, 13 (10):
  • [39] Transcriptome and Phytochemical Analyses Provide New Insights Into Long Non-Coding RNAs Modulating Characteristic Secondary Metabolites of Oolong Tea (Camellia sinensis) in Solar-Withering
    Zhu, Chen
    Zhang, Shuting
    Fu, Haifeng
    Zhou, Chengzhe
    Chen, Lan
    Li, Xiaozhen
    Lin, Yuling
    Lai, Zhongxiong
    Guo, Yuqiong
    FRONTIERS IN PLANT SCIENCE, 2019, 10
  • [40] Transcriptomic and Metabolomic Analyses Provide Insights into the Upregulation of Fatty Acid and Phospholipid Metabolism in Tomato Fruit under Drought Stress
    Asakura, Hiroko
    Yamakawa, Takashi
    Tamura, Tomoko
    Ueda, Reiko
    Taira, Shu
    Saito, Yoshikazu
    Abe, Keiko
    Asakura, Tomiko
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2021, 69 (09) : 2894 - 2905