Machine learning reveals climate forcing from aerosols is dominated by increased cloud cover

被引:63
作者
Chen, Ying [1 ,11 ]
Haywood, Jim [1 ,2 ]
Wang, Yu [3 ]
Malavelle, Florent [4 ]
Jordan, George [2 ]
Partridge, Daniel [1 ]
Fieldsend, Jonathan [1 ]
De Leeuw, Johannes [5 ]
Schmidt, Anja [5 ,6 ,7 ,12 ]
Cho, Nayeong [8 ]
Oreopoulos, Lazaros [8 ]
Platnick, Steven [8 ]
Grosvenor, Daniel [9 ]
Field, Paul [4 ,10 ]
Lohmann, Ulrike [3 ]
机构
[1] Univ Exeter, Coll Engn Math & Phys Sci, Exeter, Devon, England
[2] Met Off Hadley Ctr, Exeter, Devon, England
[3] Swiss Fed Inst Technol, Inst Atmospher & Climate Sci, Zurich, Switzerland
[4] Met Off, Exeter, Devon, England
[5] Univ Cambridge, Ctr Atmospher Sci, Yusuf Hamied Dept Chem, Cambridge, England
[6] Univ Cambridge, Dept Geog, Cambridge, England
[7] Ludwig Maximilian Univ Munich, Meteorol Inst, Munich, Germany
[8] NASA, GSFC, Earth Sci Div, Greenbelt, MD USA
[9] Univ Leeds, Natl Ctr Atmospher Sci, Leeds, W Yorkshire, England
[10] Univ Leeds, Sch Earth & Environm, Leeds, W Yorkshire, England
[11] Paul Scherrer Inst, Lab Atmospher Chem, Villigen, Switzerland
[12] German Aerosp Ctr DLR, Inst Atmospher Phys IPA, Oberpfaffenhofen, Germany
基金
英国自然环境研究理事会;
关键词
SATELLITE-OBSERVATIONS; POLLUTION AEROSOL; WATER; ALBEDO; PARAMETERIZATION; PRECIPITATION; CONSTRAINTS; MODELS; SMOKE;
D O I
10.1038/s41561-022-00991-6
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Satellite-based machine-learning analysis of a diffusive volcanic eruption suggests that aerosol climate forcing is dominated by changes in cloud cover, rather than changes in cloud brightness. Aerosol-cloud interactions have a potentially large impact on climate but are poorly quantified and thus contribute a substantial and long-standing uncertainty in climate projections. The impacts derived from climate models are poorly constrained by observations because retrieving robust large-scale signals of aerosol-cloud interactions is frequently hampered by the considerable noise associated with meteorological co-variability. The 2014 Holuhraun effusive eruption in Iceland resulted in a massive aerosol plume in an otherwise near-pristine environment and thus provided an ideal natural experiment to quantify cloud responses to aerosol perturbations. Here we disentangle significant signals from the noise of meteorological co-variability using a satellite-based machine-learning approach. Our analysis shows that aerosols from the eruption increased cloud cover by approximately 10%, and this appears to be the leading cause of climate forcing, rather than cloud brightening as previously thought. We find that volcanic aerosols do brighten clouds by reducing droplet size, but this has a notably smaller radiative impact than changes in cloud fraction. These results add substantial observational constraints on the cooling impact of aerosols. Such constraints are critical for improving climate models, which still inadequately represent the complex macro-physical and microphysical impacts of aerosol-cloud interactions.
引用
收藏
页码:609 / +
页数:18
相关论文
共 63 条
[1]  
Ackerman AS, 2000, J ATMOS SCI, V57, P2684, DOI 10.1175/1520-0469(2000)057<2684:EOAOCA>2.0.CO
[2]  
2
[3]   The impact of humidity above stratiform clouds on indirect aerosol climate forcing [J].
Ackerman, AS ;
Kirkpatrick, MP ;
Stevens, DE ;
Toon, OB .
NATURE, 2004, 432 (7020) :1014-1017
[4]   AEROSOLS, CLOUD MICROPHYSICS, AND FRACTIONAL CLOUDINESS [J].
ALBRECHT, BA .
SCIENCE, 1989, 245 (4923) :1227-1230
[5]   Understanding the drivers of marine liquid-water cloud occurrence and properties with global observations using neural networks [J].
Andersen, Hendrik ;
Cermak, Jan ;
Fuchs, Julia ;
Knutti, Reto ;
Lohmann, Ulrike .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2017, 17 (15) :9535-9546
[6]   Strong present-day aerosol cooling implies a hot future [J].
Andreae, MO ;
Jones, CD ;
Cox, PM .
NATURE, 2005, 435 (7046) :1187-1190
[7]  
[Anonymous], 2017, 2017 IEEE NUCL SCI S, DOI DOI 10.1109/NSSMIC.2017.8532793
[8]   Diagnostics for Gaussian Process Emulators [J].
Bastos, Leonardo S. ;
O'Hagan, Anthony .
TECHNOMETRICS, 2009, 51 (04) :425-438
[9]   Bounding Global Aerosol Radiative Forcing of Climate Change [J].
Bellouin, N. ;
Quaas, J. ;
Gryspeerdt, E. ;
Kinne, S. ;
Stier, P. ;
Watson-Parris, D. ;
Boucher, O. ;
Carslaw, K. S. ;
Christensen, M. ;
Daniau, A. -L. ;
Dufresne, J. -L. ;
Feingold, G. ;
Fiedler, S. ;
Forster, P. ;
Gettelman, A. ;
Haywood, J. M. ;
Lohmann, U. ;
Malavelle, F. ;
Mauritsen, T. ;
McCoy, D. T. ;
Myhre, G. ;
Muelmenstaedt, J. ;
Neubauer, D. ;
Possner, A. ;
Rugenstein, M. ;
Sato, Y. ;
Schulz, M. ;
Schwartz, S. E. ;
Sourdeval, O. ;
Storelvmo, T. ;
Toll, V. ;
Winker, D. ;
Stevens, B. .
REVIEWS OF GEOPHYSICS, 2020, 58 (01)
[10]   Assessment of aerosol-cloud-radiation correlations in satellite observations, climate models and reanalysis [J].
Bender, F. A. -M. ;
Frey, L. ;
McCoy, D. T. ;
Grosvenor, D. P. ;
Mohrmann, J. K. .
CLIMATE DYNAMICS, 2019, 52 (7-8) :4371-4392