Comparing fully automated state-of-the-art cerebellum parcellation from magnetic resonance images

被引:76
作者
Carass, Aaron [1 ,2 ]
Cuzzocreo, Jennifer L. [3 ]
Han, Shuo [4 ,5 ]
Hernandez-Castillo, Carlos R. [6 ]
Rasser, Paul E. [7 ]
Ganz, Melanie [8 ,9 ]
Beliveau, Vincent [8 ,10 ]
Dolz, Jose [11 ]
Ben Ayed, Ismail [11 ]
Desrosiers, Christian [11 ]
Thyreau, Benjamin [12 ]
Romero, Jose E. [13 ]
Coupe, Pierrick [14 ,15 ]
Manjon, Jose V. [13 ]
Fonov, Vladimir S. [16 ]
Collins, D. Louis [16 ]
Ying, Sarah H. [17 ]
Onyike, Chiadi U. [18 ]
Crocetti, Deana [19 ]
Landman, Bennett A. [20 ]
Mostofsky, Stewart H. [17 ,18 ,19 ]
Thompson, Paul M. [21 ,22 ,23 ,24 ,25 ,26 ,27 ]
Prince, Jerry L. [1 ,2 ]
机构
[1] Johns Hopkins Univ, Dept Elect & Comp Engn, 105 Barton Hall,3400 N Charles St, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Dept Comp Sci, Baltimore, MD 21218 USA
[3] Johns Hopkins Sch Med, Dept Radiol, Baltimore, MD 21287 USA
[4] Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21218 USA
[5] NIA, Lab Behav Neurosci, NIH, Baltimore, MD 20892 USA
[6] Univ Veracruzana, Inst Neuroetol, Consejo Nacl Ciencia & Tecnol, Xalapa, Veracruz, Mexico
[7] Univ Newcastle, Prior Res Ctr Brain & Mental Hlth & Stroke & Brai, Callaghan, NSW, Australia
[8] Rigshosp, Neurobiol Res Unit, Copenhagen, Denmark
[9] Univ Copenhagen, Dept Comp Sci, Copenhagen, Denmark
[10] Univ Copenhagen, Fac Hlth & Med Sci, Copenhagen, Denmark
[11] Ecole Technol Super, Lab Imagery Vis & Artificial Intelligence, Montreal, PQ, Canada
[12] Tohoku Univ, Inst Dev Aging & Canc, Sendai, Miyagi, Japan
[13] Univ Politecn Valencia, Inst Univ Tecnol Informac & Comunicac ITACA, Camino Vera S-N, E-46022 Valencia, Spain
[14] Univ Bordeaux, LaBRI, UMR 5800, PICTURA, F-33400 Talence, France
[15] CNRS, LaBRI, UMR 5800, PICTURA, F-33400 Talence, France
[16] McGill Univ, Montreal Neurol Inst, Image Proc Lab, Montreal, PQ, Canada
[17] Johns Hopkins Sch Med, Dept Neurol, Baltimore, MD 21287 USA
[18] Johns Hopkins Sch Med, Dept Psychiat & Behav Sci, Baltimore, MD 21287 USA
[19] Kennedy Krieger Inst, Ctr Neurodev Med & Imaging Res, Baltimore, MD 21205 USA
[20] Vanderbilt Univ, Dept Elect Engn & Comp Sci, 221 Kirkland Hall, Nashville, TN 37235 USA
[21] Univ Southern Calif, Imaging Genet Ctr, Mark & Mary Stevens Inst Neuroimaging & Informat, Keck Sch Med, Marina Del Rey, CA 90292 USA
[22] Univ Southern Calif, Dept Neurol, Los Angeles, CA 90033 USA
[23] Univ Southern Calif, Dept Pediat, Los Angeles, CA 90033 USA
[24] Univ Southern Calif, Dept Psychiat, Los Angeles, CA 90033 USA
[25] Univ Southern Calif, Dept Radiol, Los Angeles, CA 90033 USA
[26] Univ Southern Calif, Dept Engn, Los Angeles, CA 90033 USA
[27] Univ Southern Calif, Dept Ophthalmol, Los Angeles, CA 90033 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Magnetic resonance imaging; Cerebellar ataxia; Attention deficit hyperactivity disorder; Autism; MILD COGNITIVE IMPAIRMENT; WHOLE-BRAIN SEGMENTATION; HUMAN CEREBRAL-CORTEX; GRAY-MATTER; LESION SEGMENTATION; ALZHEIMERS-DISEASE; MR-IMAGES; CORTICAL RECONSTRUCTION; TISSUE CLASSIFICATION; OPTIMIZED PATCHMATCH;
D O I
10.1016/j.neuroimage.2018.08.003
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The human cerebellum plays an essential role in motor control, is involved in cognitive function (i.e., attention, working memory, and language), and helps to regulate emotional responses. Quantitative in-vivo assessment of the cerebellum is important in the study of several neurological diseases including cerebellar ataxia, autism, and schizophrenia. Different structural subdivisions of the cerebellum have been shown to correlate with differing pathologies. To further understand these pathologies, it is helpful to automatically parcellate the cerebellum at the highest fidelity possible. In this paper, we coordinated with colleagues around the world to evaluate automated cerebellum parcellation algorithms on two clinical cohorts showing that the cerebellum can be parcellated to a high accuracy by newer methods. We characterize these various methods at four hierarchical levels: coarse (i.e., whole cerebellum and gross structures), lobe, subdivisions of the vermis, and the lobules. Due to the number of labels, the hierarchy of labels, the number of algorithms, and the two cohorts, we have restricted our analyses to the Dice measure of overlap. Under these conditions, machine learning based methods provide a collection of strategies that are efficient and deliver parcellations of a high standard across both cohorts, surpassing previous work in the area. In conjunction with the rank-sum computation, we identified an overall winning method.
引用
收藏
页码:150 / 172
页数:23
相关论文
共 154 条
[1]  
Abulnaga S.M., 2016, P SPIE MEDICAL IMAGI
[2]   Differential effects of developmental cerebellar abnormality on cognitive and motor functions in the cerebellum: An fMRI study of autism [J].
Allen, G ;
Courchesne, E .
AMERICAN JOURNAL OF PSYCHIATRY, 2003, 160 (02) :262-273
[3]   Neuroanatomy of autism [J].
Amaral, David G. ;
Schumann, Cynthia Mills ;
Nordahl, Christine Wu .
TRENDS IN NEUROSCIENCES, 2008, 31 (03) :137-145
[4]   The role of the cerebellum in schizophrenia [J].
Andreasen, Nancy C. ;
Pierson, Ronald .
BIOLOGICAL PSYCHIATRY, 2008, 64 (02) :81-88
[5]  
[Anonymous], 2010, P PYTH SCI C
[6]  
[Anonymous], 1984, The cerebellum and neural control
[7]  
[Anonymous], 2016, MEDICAL IMAGE RECOGN
[8]  
Ashburner J, 2000, HUM BRAIN MAPP, V9, P212, DOI 10.1002/(SICI)1097-0193(200004)9:4<212::AID-HBM3>3.0.CO
[9]  
2-#
[10]   Unified segmentation [J].
Ashburner, J ;
Friston, KJ .
NEUROIMAGE, 2005, 26 (03) :839-851