Real-Time Induction Motor Health Index Prediction in A Petrochemical Plant using Machine Learning

被引:4
|
作者
Khrakhuean, Waritsara [1 ]
Chutima, Parames [1 ,2 ]
机构
[1] Chulalongkorn Univ, Fac Engn, Dept Ind Engn, Bangkok, Thailand
[2] Royal Soc Thailand, Acad Sci, Bangkok, Thailand
来源
ENGINEERING JOURNAL-THAILAND | 2022年 / 26卷 / 05期
关键词
Real-time prediction; machine learning; artificial neural network; particle swarm optimisation; gradient boost tree; random forest; PARTICLE SWARM OPTIMIZATION; RANDOM FOREST CLASSIFIER; ALGORITHM;
D O I
10.4186/ej.2022.26.5.91
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents real-time health prediction of induction motors (IMs) utilised in a petrochemical plant through the application of intelligent sensors and machine learning (ML) models. At present, maintenance engineers of the company implement time-based and condition-based maintenance techniques in periodically examining and diagnosing the health of IMs which results in sporadic breakdowns of IMs. Such breakdowns sometimes force the entire production process to stop for emergency maintenance resulting in a huge loss in the company's revenue. Hence, top management decides to switch the operational practice to real-time predictive maintenance instead. Intelligent sensors are installed on IMs to collect necessary information related to their working statuses. ML exploits the real-time information received from intelligent sensors to flag abnormalities of mechanical or electrical components of IMs before potential failures are reached. Four ML models are investigated to evaluate which one is the best, i.e. Artificial Neural Network (ANN), Particle Swarm Optimization (PSO), Gradient Boosting Tree (GBT) and Random Forest (RF). Standard performance metrics are used to compare the relative effectiveness among different ML models including Precision, Recall, Accuracy, F1-score, and AUC-ROC curve. The results reveal that PSO not only obtains the highest average weighted Accuracy but also can differentiate the statuses (Class 0 - Class 3) of the TM more correctly than other counterpart models.
引用
收藏
页码:91 / 107
页数:17
相关论文
共 50 条
  • [41] Real-time Prediction of Styrene Production Volume based on Machine Learning Algorithms
    Wu, Yikai
    Hou, Fang
    Cheng, Xiaopei
    ADVANCES IN DATA MINING: APPLICATIONS AND THEORETICAL ASPECTS, ICDM 2017, 2017, 10357 : 301 - 312
  • [42] Attitude Prediction towards ICT and Mobile Technology for the Real-Time: An Experimental Study using Machine Learning
    Verma, Chaman
    Illes, Zoltan
    NEW TECHNOLOGIES AND REDESIGNING LEARNING SPACES, VOL III, 2019, : 247 - 254
  • [43] Machine Learning-Based Real-Time Metasurface Reconfiguration
    Su, Feng
    Luong, David
    Lam, Ian
    Rajan, Sreeraman
    Gupta, Shulabh
    2023 IEEE SENSORS APPLICATIONS SYMPOSIUM, SAS, 2023,
  • [44] Real-Time Prediction of Sepsis in Critical Trauma Patients: Machine Learning-Based Modeling Study
    Li, Jiang
    Xi, Fengchan
    Yu, Wenkui
    Sun, Chuanrui
    Wang, Xiling
    JMIR FORMATIVE RESEARCH, 2023, 7
  • [45] Applications of machine learning in real-time control systems: a review
    Zhao, Xiaoning
    Sun, Yougang
    Li, Yanmin
    Jia, Ning
    Xu, Junqi
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (01)
  • [46] Practical real-time intrusion detection using machine learning approaches
    Sangkatsanee, Phurivit
    Wattanapongsakorn, Naruemon
    Charnsripinyo, Chalermpol
    COMPUTER COMMUNICATIONS, 2011, 34 (18) : 2227 - 2235
  • [47] A Compositional Approach for Real-Time Machine Learning
    Allen, Nathan
    Raje, Yash
    Ro, Jin Woo
    Roop, Partha
    17TH ACM-IEEE INTERNATIONAL CONFERENCE ON FORMAL METHODS AND MODELS FOR SYSTEM DESIGN (MEMOCODE), 2019,
  • [48] Real-Time Framework for Malware Detection Using Machine Learning Technique
    Mukesh, Sharma Divya
    Raval, Jigar A.
    Upadhyay, Hardik
    INFORMATION AND COMMUNICATION TECHNOLOGY FOR INTELLIGENT SYSTEMS (ICTIS 2017) - VOL 1, 2018, 83 : 173 - 182
  • [49] HarX: Real-time harassment detection tool using machine learning
    Rizwan, Kainat
    Babar, Sehar
    Nayab, Sania
    Hanif, Muhammad Kashif
    2021 INTERNATIONAL CONFERENCE OF MODERN TRENDS IN INFORMATION AND COMMUNICATION TECHNOLOGY INDUSTRY (MTICTI 2021), 2021, : 66 - 71
  • [50] Real-Time Hand Gesture Recognition With EMG Using Machine Learning
    Jaramillo, Andres G.
    Benalcazar, Marco E.
    2017 IEEE SECOND ECUADOR TECHNICAL CHAPTERS MEETING (ETCM), 2017,