Magnetic-Sparseness and Schrodinger Operators on Graphs

被引:6
作者
Bonnefont, Michel [1 ]
Golenia, Sylvain [1 ]
Keller, Matthias [2 ]
Liu, Shiping [3 ]
Muench, Florentin [2 ]
机构
[1] Univ Bordeaux, Inst Math Bordeaux, 351 Cours Liberat, F-33405 Talence, France
[2] Univ Potsdam, Inst Math, D-14476 Potsdam, Germany
[3] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
来源
ANNALES HENRI POINCARE | 2020年 / 21卷 / 05期
基金
英国工程与自然科学研究理事会;
关键词
CHEEGER INEQUALITIES; SPECTRAL PROPERTIES; DISCRETE; LAPLACIANS; CURVATURE;
D O I
10.1007/s00023-020-00885-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study magnetic Schrodinger operators on graphs. We extend the notion of sparseness of graphs by including a magnetic quantity called the frustration index. This notion of magnetic-sparseness turns out to be equivalent to the fact that the form domain is an l(2) space. As a consequence, we get criteria of discreteness for the spectrum and eigenvalue asymptotics.
引用
收藏
页码:1489 / 1516
页数:28
相关论文
共 22 条