NULL CONTROLLABILITY FOR A CLASS OF STOCHASTIC SINGULAR PARABOLIC EQUATIONS WITH THE CONVECTION TERM

被引:4
作者
Yan, Lin [1 ]
Wu, Bin [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2022年 / 27卷 / 06期
关键词
Stochastic singular parabolic equation; Carleman estimate; null controllability; HEAT-EQUATION; CARLEMAN ESTIMATE; DIFFUSION;
D O I
10.3934/dcdsb.2021182
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns the null controllability for a class of stochastic singular parabolic equations with the convection term in one dimensional space. Due to the singularity, we first transfer to study an approximate nonsingular system. Next we establish a new Carleman estimate for the backward stochastic singular parabolic equation with convection term and then an observability inequality for the adjoint system of the approximate system. Based on this observability inequality and an approximate argument, we obtain the null controllability result.
引用
收藏
页码:3213 / 3240
页数:28
相关论文
共 39 条
[1]   Carleman estimates for degenerate parabolic operators with applications to null controllability [J].
Alabau-Boussouira, F. ;
Cannarsa, P. ;
Fragnelli, G. .
JOURNAL OF EVOLUTION EQUATIONS, 2006, 6 (02) :161-204
[2]   Carleman estimates and controllability of linear stochastic heat equations [J].
Barbu, V ;
Rascanu, A ;
Tessitore, G .
APPLIED MATHEMATICS AND OPTIMIZATION, 2003, 47 (02) :97-120
[3]   Null controllability for a heat equation with a singular inverse-square potential involving the distance to the boundary function [J].
Biccari, Umberto ;
Zuazua, Enrique .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (05) :2809-2853
[4]   Carleman estimates for a class of degenerate parabolic operators [J].
Cannarsa, P. ;
Martinez, P. ;
Vancostenoble, J. .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (01) :1-19
[5]   Determination of source terms in a degenerate parabolic equation [J].
Cannarsa, P. ;
Tort, J. ;
Yamamoto, M. .
INVERSE PROBLEMS, 2010, 26 (10)
[6]   Carleman estimates and null controllability for boundary-degenerate parabolic operators [J].
Cannarsa, Piermarco ;
Martinez, Partick ;
Vancostenoble, Judith .
COMPTES RENDUS MATHEMATIQUE, 2009, 347 (3-4) :147-152
[7]   NULL CONTROLLABILITY OF ONE DIMENSIONAL DEGENERATE PARABOLIC EQUATIONS WITH FIRST ORDER TERMS [J].
Carmelo Flores, J. ;
De Teresa, Luz .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (10) :3963-3981
[8]   CONTROLLABILITY OF THE HEAT EQUATION WITH AN INVERSE-SQUARE POTENTIAL LOCALIZED ON THE BOUNDARY [J].
Cazacu, Cristian .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2014, 52 (04) :2055-2089
[9]   ON THE CONTROL OF THE LINEAR KURAMOTO-SIVASHINSKY EQUATION [J].
Cerpa, Eduardo ;
Guzman, Patricio ;
Mercado, Alberto .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2017, 23 (01) :165-194
[10]  
Da Prato Giuseppe, 2014, Encyclopedia of Mathematics and its Applications, DOI [DOI 10.1017/CBO9781107295513, 10.1017/CBO9781107295513]