Adaptive Optimal Trajectory Tracking Control Applied to a Large-Scale Ball-on-Plate System

被引:0
作者
Koepf, Florian [1 ]
Kille, Sean [1 ]
Inga, Jairo [1 ]
Hohmann, Soeren [1 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Control Syst, Karlsruhe, Germany
来源
2021 AMERICAN CONTROL CONFERENCE (ACC) | 2021年
关键词
TIME-SYSTEMS; REINFORCEMENT; STABILIZATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
While many theoretical works concerning Adaptive Dynamic Programming (ADP) have been proposed, application results are scarce. Therefore, we design an ADP-based optimal trajectory tracking controller and apply it to a large-scale ball-on-plate system. Our proposed method incorporates an approximated reference trajectory instead of using setpoint tracking and allows to automatically compensate for constant offset terms. Due to the off-policy characteristics of the algorithm, the method requires only a small amount of measured data to train the controller. Our experimental results show that this tracking mechanism significantly reduces the control cost compared to setpoint controllers. Furthermore, a comparison with a model-based optimal controller highlights the benefits of our model-free data-based ADP tracking controller, where no system model and manual tuning are required but the controller is tuned automatically using measured data.
引用
收藏
页码:1352 / 1357
页数:6
相关论文
共 22 条
  • [1] [Anonymous], 2003, The Journal of Machine Learning Research
  • [2] Mechatronic design of a ball-on-plate balancing system
    Awtar, S
    Bernard, C
    Boklund, N
    Master, A
    Ueda, D
    Craig, K
    [J]. MECHATRONICS, 2002, 12 (02) : 217 - 228
  • [3] A novel actor-critic-identifier architecture for approximate optimal control of uncertain nonlinear systems
    Bhasin, S.
    Kamalapurkar, R.
    Johnson, M.
    Vamvoudakis, K. G.
    Lewis, F. L.
    Dixon, W. E.
    [J]. AUTOMATICA, 2013, 49 (01) : 82 - 92
  • [4] Braescu F. C., 2012, 2012 16 INT C SYST T, P1
  • [5] Busoniu L, 2010, AUTOM CONTROL ENG SE, P1, DOI 10.1201/9781439821091-f
  • [6] Dusek F, 2017, 2017 21ST INTERNATIONAL CONFERENCE ON PROCESS CONTROL (PC), P216, DOI 10.1109/PC.2017.7976216
  • [7] Control of a Quadrotor With Reinforcement Learning
    Hwangbo, Jemin
    Sa, Inkyu
    Siegwart, Roland
    Hutter, Marco
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2017, 2 (04): : 2096 - 2103
  • [8] Robust Adaptive Dynamic Programming and Feedback Stabilization of Nonlinear Systems
    Jiang, Yu
    Jiang, Zhong-Ping
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2014, 25 (05) : 882 - 893
  • [9] Kastner A, 2019, 2019 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS (ICM), P257, DOI [10.1109/icmech.2019.8722850, 10.1109/ICMECH.2019.8722850]
  • [10] Reinforcement Q-learning for optimal tracking control of linear discrete-time systems with unknown dynamics
    Kiumarsi, Bahare
    Lewis, Frank L.
    Modares, Hamidreza
    Karimpour, Ali
    Naghibi-Sistani, Mohammad-Bagher
    [J]. AUTOMATICA, 2014, 50 (04) : 1167 - 1175