The Korteweg-de Vries equation on a metric star graph

被引:18
|
作者
Cavalcante, Marcio [1 ]
机构
[1] Univ Fed Alagoas, Inst Matemat, Maceio, Brazil
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2018年 / 69卷 / 05期
关键词
Local well-posedness; Korteweg-de Vries equation; Metric star graph; Low regularity; BOUNDARY-VALUE-PROBLEM; NLS EQUATION; ORBITAL STABILITY; WELL-POSEDNESS; CAUCHY-PROBLEM; WAVES; MODEL;
D O I
10.1007/s00033-018-1018-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove local well-posedness for the Cauchy problem associated with Korteweg-de Vries equation on a metric star graph with three semi-infinite edges given by one negative half-line and two positive half-lines attached to a common vertex, for two classes of boundary conditions. The results are obtained in the low regularity setting by using the Duhamel boundary forcing operator, in context of half-lines, introduced by Colliander and Kenig (Commun Partial Differ Equ 27(11/12): 2187-2266, 2002), and extended by Holmer (Commun Partial Differ Equ 31:1151-1190, 2006) and Cavalcante (Differ Integral Equ 30(7/8):521-554, 2017).
引用
收藏
页数:22
相关论文
共 50 条
  • [11] The Korteweg-de Vries equation on an interval
    Himonas, A. Alexandrou
    Mantzavinos, Dionyssios
    Yan, Fangchi
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (05)
  • [12] Renormalization in the cauchy problem for the Korteweg-de Vries equation
    Zakharov, S. V.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2013, 175 (02) : 592 - 595
  • [13] Renormalization in the cauchy problem for the Korteweg-de Vries equation
    S. V. Zakharov
    Theoretical and Mathematical Physics, 2013, 175 : 592 - 595
  • [14] Convergence of the Rosenau-Korteweg-de Vries Equation to the Korteweg-de Vries One
    Coclite, Giuseppe Maria
    di Ruvo, Lorenzo
    CONTEMPORARY MATHEMATICS, 2020, 1 (05): : 365 - 392
  • [15] The Korteweg-de Vries equation in a cylindrical pipe
    V. A. Rukavishnikov
    O. P. Tkachenko
    Computational Mathematics and Mathematical Physics, 2008, 48 : 139 - 146
  • [16] Solutions to the modified Korteweg-de Vries equation
    Zhang, Da-Jun
    Zhao, Song-Lin
    Sun, Ying-Ying
    Zhou, Jing
    REVIEWS IN MATHEMATICAL PHYSICS, 2014, 26 (07)
  • [17] CONTROL OF A KORTEWEG-DE VRIES EQUATION: A TUTORIAL
    Cerpa, Eduardo
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2014, 4 (01) : 45 - 99
  • [18] The initial-boundary value problem for the Korteweg-de Vries equation
    Holmer, Justin
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2006, 31 (08) : 1151 - 1190
  • [19] Primitive solutions of the Korteweg-de Vries equation
    Dyachenko, S. A.
    Nabelek, P.
    Zakharov, D. V.
    Zakharov, V. E.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2020, 202 (03) : 334 - 343
  • [20] COMPACT SCHEMES FOR KORTEWEG-DE VRIES EQUATION
    Yin, Xiu-Ling
    Zhang, Cheng-Jian
    Zhang, Jing-Jing
    Liu, Yan-Qin
    THERMAL SCIENCE, 2017, 21 (04): : 1797 - 1806