The Korteweg-de Vries equation on a metric star graph

被引:18
作者
Cavalcante, Marcio [1 ]
机构
[1] Univ Fed Alagoas, Inst Matemat, Maceio, Brazil
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2018年 / 69卷 / 05期
关键词
Local well-posedness; Korteweg-de Vries equation; Metric star graph; Low regularity; BOUNDARY-VALUE-PROBLEM; NLS EQUATION; ORBITAL STABILITY; WELL-POSEDNESS; CAUCHY-PROBLEM; WAVES; MODEL;
D O I
10.1007/s00033-018-1018-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove local well-posedness for the Cauchy problem associated with Korteweg-de Vries equation on a metric star graph with three semi-infinite edges given by one negative half-line and two positive half-lines attached to a common vertex, for two classes of boundary conditions. The results are obtained in the low regularity setting by using the Duhamel boundary forcing operator, in context of half-lines, introduced by Colliander and Kenig (Commun Partial Differ Equ 27(11/12): 2187-2266, 2002), and extended by Holmer (Commun Partial Differ Equ 31:1151-1190, 2006) and Cavalcante (Differ Integral Equ 30(7/8):521-554, 2017).
引用
收藏
页数:22
相关论文
共 33 条
[1]   Variational properties and orbital stability of standing waves for NLS equation on a star graph [J].
Adami, Riccardo ;
Cacciapuoti, Claudio ;
Finco, Domenico ;
Noja, Diego .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (10) :3738-3777
[2]  
Ardila AH, 2017, DIFFER INTEGRAL EQU, V30, P735
[3]  
Bellazzini B., 2006, PHYSICA A, V39, P1101
[4]  
Berkolaiko G, 2006, CONTEMP MATH, V415, P35
[5]  
Bona J.L., 2008, CANADIAN APPL MATH Q, V16, P1
[6]  
Bona JL, 2006, DYNAM PART DIFFER EQ, V3, P1
[7]   Non-homogeneous boundary value problems for the Korteweg-de Vries and the Korteweg-de Vries-Burgers equations in a quarter plane [J].
Bona, Jerry L. ;
Sun, S. M. ;
Zhang, Bing-Yu .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (06) :1145-1185
[8]  
Bourgain J., 1993, Geom. Funct. Anal., V3, P107
[9]   Ground state and orbital stability for the NLS equation on a general starlike graph with potentials [J].
Cacciapuoti, Claudio ;
Finco, Domenico ;
Noja, Diego .
NONLINEARITY, 2017, 30 (08) :3271-3303
[10]   On the Inverse Scattering Method for Integrable PDEs on a Star Graph [J].
Caudrelier, Vincent .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 338 (02) :893-917