The Korteweg-de Vries equation on a metric star graph

被引:18
|
作者
Cavalcante, Marcio [1 ]
机构
[1] Univ Fed Alagoas, Inst Matemat, Maceio, Brazil
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2018年 / 69卷 / 05期
关键词
Local well-posedness; Korteweg-de Vries equation; Metric star graph; Low regularity; BOUNDARY-VALUE-PROBLEM; NLS EQUATION; ORBITAL STABILITY; WELL-POSEDNESS; CAUCHY-PROBLEM; WAVES; MODEL;
D O I
10.1007/s00033-018-1018-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove local well-posedness for the Cauchy problem associated with Korteweg-de Vries equation on a metric star graph with three semi-infinite edges given by one negative half-line and two positive half-lines attached to a common vertex, for two classes of boundary conditions. The results are obtained in the low regularity setting by using the Duhamel boundary forcing operator, in context of half-lines, introduced by Colliander and Kenig (Commun Partial Differ Equ 27(11/12): 2187-2266, 2002), and extended by Holmer (Commun Partial Differ Equ 31:1151-1190, 2006) and Cavalcante (Differ Integral Equ 30(7/8):521-554, 2017).
引用
收藏
页数:22
相关论文
共 50 条
  • [1] The Korteweg–de Vries equation on a metric star graph
    Márcio Cavalcante
    Zeitschrift für angewandte Mathematik und Physik, 2018, 69
  • [2] Dynamics of the Korteweg-de Vries Equation on a Balanced Metric Graph
    Angulo, Jaime
    Cavalcante, Marcio
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2025, 56 (01):
  • [3] Linear instability criterion for the Korteweg-de Vries equation on metric star graphs
    Angulo Pava, Jaime
    Cavalcante, Marcio
    NONLINEARITY, 2021, 34 (05) : 3373 - 3410
  • [4] The Korteweg-de Vries equation on the interval
    Hitzazis, Iasonas
    Tsoubelis, Dimitri
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (08)
  • [5] Boundary Stabilization of the Korteweg-de Vries Equation and the Korteweg-de Vries-Burgers Equation
    Chaohua Jia
    Bing-Yu Zhang
    Acta Applicandae Mathematicae, 2012, 118 : 25 - 47
  • [6] Unconditional uniqueness for the modified Korteweg-de Vries equation on the line
    Molinet, Luc
    Pilod, Didier
    Vento, Stephan
    REVISTA MATEMATICA IBEROAMERICANA, 2018, 34 (04) : 1563 - 1608
  • [7] Boundary Stabilization of the Korteweg-de Vries Equation and the Korteweg-de Vries-Burgers Equation
    Jia, Chaohua
    Zhang, Bing-Yu
    ACTA APPLICANDAE MATHEMATICAE, 2012, 118 (01) : 25 - 47
  • [8] The Korteweg-de Vries equation on the half-line
    Fokas, Athanassios S.
    Himonas, A. Alexandrou
    Mantzavinos, Dionyssios
    NONLINEARITY, 2016, 29 (02) : 489 - 527
  • [9] On the singular solutions of the Korteweg-de Vries equation
    S. I. Pokhozhaev
    Mathematical Notes, 2010, 88 : 741 - 747
  • [10] On the Singular Solutions of the Korteweg-de Vries Equation
    Pokhozhaev, S. I.
    MATHEMATICAL NOTES, 2010, 88 (5-6) : 741 - 747