Lack of microRNA-155 ameliorates renal fibrosis by targeting PDE3A/TGF-β1/Smad signaling in mice with obstructive nephropathy

被引:17
作者
Xi, Weiwei [1 ]
Zhao, Xuming [1 ]
Wu, Meijun [2 ]
Jia, Wenjuan [1 ]
Li, Hua [1 ]
机构
[1] Zhejiang Univ, Coll Med, Dept Nephrol, Affiliated Sir Run Run Shaw Hosp, Qingchun Rd 3rd, Hangzhou 310016, Zhejiang, Peoples R China
[2] First Peoples Hosp Hangzhou, Dept Comprehens Hlth Care, Hangzhou 310016, Zhejiang, Peoples R China
关键词
epithelial-mesenchymal transition; microRNA-155; PDE3A; renal fibrosis; TGF-beta; 1; Smad signaling; TO-MESENCHYMAL TRANSITION; PHOSPHODIESTERASE; 3A1; PROTECTS; TGF-BETA; DIABETIC-NEPHROPATHY; PATHWAY; EXPRESSION; HEART; OVEREXPRESSION; INHIBITION; FAILURE;
D O I
10.1002/cbin.11038
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Although microRNA-155 (miR-155) is implicated in the pathogenesis of several fibrotic diseases, information regarding its functional role in renal fibrosis is limited. The current study aims to investigate the effects of miR-155 on renal fibrosis in unilateral ureteral occlusion (UUO) mice. MiR-155 level was significantly increased in renal tissues of UUO mice and TGF-1-treated HK2 cells. Masson's trichrome staining showed that delivery of adeno-associated virus encoding miR-155 inhibitor led to a decrease in renal fibrosis induced by UUO. The increased expression of plasminogen activator inhibitor type 1, collagen III and collagen IV was also inhibited after miR-155 inhibition. In addition, miR-155 knockdown also prevented TGF-1-induced epithelial-mesenchymal transition, concomitantly with a restoration of E-cadherin expression and a decrease of vimentin expression. Computational analysis revealed that miR-155 directly targets at 3UTR of PDE3A. Overexpression of miR-155 suppressed the luciferase activity and protein expression of PDE3A, whereas inhibition of miR-155 increased PDE3A luciferase activity and expression. Furthermore, miR-155 inhibited TGF-1-induced the increase of TGF-1 expression and Smad-2/3 phosphorylation in HK2 cells. In contrast, knockdown of PDE3A reversed the effect of miR-155 inhibition on TGF-1 expression. This study demonstrates that knockdown of miR-155 attenuates renal fibrosis via inhibiting TGF-1/Smad signaling activation by targeting the upstream molecule PDE3A. This study suggests that miR-155 inhibition may be a novel therapeutic approach for preventing fibrotic kidney diseases.
引用
收藏
页码:1523 / 1532
页数:10
相关论文
共 50 条
  • [21] Ponatinib ameliorates pulmonary fibrosis by suppressing TGF-β1/Smad3 pathway
    Qu, Yubei
    Zhang, Liang
    Kang, Zechun
    Jiang, Wanglin
    Lv, Changjun
    PULMONARY PHARMACOLOGY & THERAPEUTICS, 2015, 34 : 1 - 7
  • [22] Urolithin A attenuates renal fibrosis by inhibiting TGF-β1/Smad and MAPK signaling pathways
    Cheng, Zhenzhen
    Tu, Jingjing
    Zhang, Hongpan
    Zhang, Yi
    Zhou, Benhong
    JOURNAL OF FUNCTIONAL FOODS, 2021, 83
  • [23] HuangQi Decoction Ameliorates Renal Fibrosis via TGF-β/Smad Signaling Pathway In Vivo and In Vitro
    Zhao, Jie
    Wang, Li
    Cao, Ai-li
    Jiang, Ming-Qian
    Chen, Xia
    Wang, Yi
    Wang, Yun-man
    Wang, Hao
    Zhang, Xue-Mei
    Peng, Wen
    CELLULAR PHYSIOLOGY AND BIOCHEMISTRY, 2016, 38 (05) : 1761 - 1774
  • [24] Lapatinib ameliorates skin fibrosis by inhibiting TGF-β1/Smad and non-Smad signaling pathway
    Wang, Yongping
    Zhang, Tiantian
    Song, Hao
    Yang, Cheng
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [25] You-gui Pill ameliorates renal tubulointerstitial fibrosis via inhibition of TGF-β/Smad signaling pathway
    Wang, Li
    Cao, Ai-li
    Chi, Yang-Feng
    Ju, Zheng-Cai
    Yin, Pei-Hao
    Zhang, Xue-Mei
    Peng, Wen
    JOURNAL OF ETHNOPHARMACOLOGY, 2015, 169 : 229 - 238
  • [26] Evodiamine ameliorates liver fibrosis in rats via TGF-β1/Smad signaling pathway
    Yang, Dongmei
    Li, Li
    Qian, Shanjun
    Liu, Lixin
    JOURNAL OF NATURAL MEDICINES, 2018, 72 (01) : 145 - 154
  • [27] Ferulic acid ameliorates concanavalin A-induced hepatic fibrosis in mice via suppressing TGF-β/smad signaling
    Elazab, Sara T.
    Hsu, Walter H.
    TOXICOLOGY AND APPLIED PHARMACOLOGY, 2024, 492
  • [28] Acetylshikonin from Zicao ameliorates renal dysfunction and fibrosis in diabetic mice by inhibiting TGF-β1/Smad pathway
    Zezhao Li
    Zhen Hong
    Zhiqing Peng
    Yongcai Zhao
    Rusheng Shao
    Human Cell, 2018, 31 : 199 - 209
  • [29] Isoliensinine Attenuates Renal Fibrosis and Inhibits TGF-β1/Smad2/3 Signaling Pathway in Spontaneously Hypertensive Rats
    Yao, Mengying
    Lian, Dawei
    Wu, Meizhu
    Zhou, Yuting
    Fang, Yi
    Zhang, Siyu
    Zhang, Wenqiang
    Yang, Yanyan
    Li, Renfeng
    Chen, Hong
    Chen, Youqin
    Shen, Aling
    Peng, Jun
    DRUG DESIGN DEVELOPMENT AND THERAPY, 2023, 17 : 2749 - 2762
  • [30] NDRG2 knockdown promotes fibrosis in renal tubular epithelial cells through TGF-β1/Smad3 pathway
    Jin, Zhibo
    Gu, Chaohui
    Tian, Fengyan
    Jia, Zhankui
    Yang, Jinjian
    CELL AND TISSUE RESEARCH, 2017, 369 (03) : 603 - 610