Stability and vibrations of catenoid-shaped smectic films

被引:16
作者
Ben Amar, M
da Silva, PP
Limodin, N
Langlois, A
Brazovskaia, M
Even, C
Chikina, IV
Pieranski, P
机构
[1] Ecole Normale Super, CNRS, Lab Phys Stat, F-75231 Paris 05, France
[2] Univ Paris Sud, Phys Solides Lab, F-91405 Orsay, France
[3] CEA Saclay, CNRS, Lab Leon Brillouin, F-91191 Gif Sur Yvette, France
关键词
PACS. 61.30.-v Liquid crystals - 62.30.+d Mechanical and elastic waves; vibrations - 03.40.-t Classical mechanics of continuous media: general mathematical aspects;
D O I
10.1007/s100510050303
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Catenoid-shaped smectic films are spanned between two coaxial circular frames separated by a distance H. It is shown that there exists a critical height H* such that below it two shapes of the catenoid are possible. The stability of these two shapes is analysed in terms of their vibrations. The spectrum of eigenfrequencies is calculated as a function of the catenoid height. It is shown that the frequency of the fundamental mode is real for the stable shape and imaginary for the other shape. Experimental study of vibrational eigenmodes performed on stable SCE4 films confirms this theoretical prediction.
引用
收藏
页码:197 / 202
页数:6
相关论文
共 9 条
  • [1] BENAMAR M, IN PRESS P ROYAL SOC
  • [2] BRAZOVSKAIA M, 1997, SCIENCE APR
  • [3] CHIKINA IV, TRANSFER SMECTIC FIL
  • [4] COLLAPSE OF THE SOAP-FILM BRIDGE - QUASI-STATIC DESCRIPTION
    CRYER, SA
    STEEN, PH
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1992, 154 (01) : 276 - 288
  • [5] Mechanical perturbation applied on freely suspended smectic films
    Kraus, I
    Bahr, C
    Pieranski, P
    [J]. MOLECULAR CRYSTALS AND LIQUID CRYSTALS SCIENCE AND TECHNOLOGY SECTION A-MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 1995, 262 : 1 - 12
  • [6] Kraus I, 1997, J PHYS II, V7, P1617, DOI 10.1051/jp2:1997206
  • [7] KRAUS I, 1995, THESIS ORSAY
  • [8] PHYSICS OF SMECTIC MEMBRANES
    PIERANSKI, P
    BELIARD, L
    TOURNELLEC, JP
    LEONCINI, X
    FURTLEHNER, C
    DUMOULIN, H
    RIOU, E
    JOUVIN, B
    FENEROL, JP
    PALARIC, P
    HEUVING, J
    CARTIER, B
    KRAUS, I
    [J]. PHYSICA A, 1993, 194 (1-4): : 364 - 389
  • [9] Struik D.J., 1950, Lectures on Classical Differential Geometry