Automatic epileptic seizure detection using LSTM networks

被引:15
|
作者
Shekokar, Kishori Sudhir [1 ]
Dour, Shweta [2 ]
机构
[1] Navrachana Univ, Comp Sci & Engn Dept, Vadodara, India
[2] Navrachana Univ, Elect & Elect Engn Dept, Vadodara, India
关键词
Deep learning; CAD; EEG; Epilepsy; LSTM; Seizures; NEURAL-NETWORK; CLASSIFICATION;
D O I
10.1108/WJE-06-2021-0348
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Purpose The purpose of this work is to make a computer aided detection system for epileptic seizures. Epilepsy is a neurological disorder characterized as the recurrence of two or more unprovoked seizures. The common and significant tool for aiding in the identification of epilepsy is Electroencephalography (EEG). The EEG signals contain information about the electrical activity of the brain. Conventionally, clinicians study the EEG waveforms manually to detect epileptic abnormalities, which is very time-consuming and error-prone. Design/methodology/approach The authors have presented a three-layer long short-term memory network for the detection of epileptic seizures. Findings The network classifies between seizure and non-seizure with 99.5% accuracy only in 30 epochs. This makes the proposed methodology useful for real-time seizure detection. Originality/value This research work is original and not plagiarized.
引用
收藏
页码:224 / 229
页数:6
相关论文
共 50 条
  • [31] Automatic Epileptic Seizure Onset Detection Using Matching Pursuit: A Case Study
    Sorensen, Thomas L.
    Olsen, Ulrich L.
    Conradsen, Isa
    Henriksen, Jonas
    Kjaer, Troels W.
    Thomsen, Carsten E.
    Sorensen, Helge B. D.
    2010 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2010, : 3277 - 3280
  • [32] Epileptic Seizure Detection in EEGs Using Time-Frequency Analysis
    Tzallas, Alexandros T.
    Tsipouras, Markos G.
    Fotiadis, Dimitrios I.
    IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2009, 13 (05): : 703 - 710
  • [33] MMSFL-OWFB: A novel class of orthogonal wavelet filters for epileptic seizure detection
    Sharma, Manish
    Bhurane, Ankit A.
    Acharya, U. Rajendra
    KNOWLEDGE-BASED SYSTEMS, 2018, 160 : 265 - 277
  • [34] Epileptic seizure detection on a compressed EEG signal using energy measurement
    Wijayanto, Inung
    Humairani, Annisa
    Hadiyoso, Sugondo
    Rizal, Achmad
    Prasanna, Dasari Lakshmi
    Tripathi, Suman Lata
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 85
  • [35] Automatic Seizure Detection Using Multi-Resolution Dynamic Mode Decomposition
    Bilal, Muhammad
    Rizwan, Muhammad
    Saleem, Sajid
    Khan, Muhammad Murtaza
    Alkatheiri, Mohammed Saeed
    Alqarni, Mohammed
    IEEE ACCESS, 2019, 7 : 61180 - 61194
  • [36] Comparison of Automated Machine Learning (AutoML) Tools for Epileptic Seizure Detection Using Electroencephalograms (EEG)
    Lenkala, Swetha
    Marry, Revathi
    Gopovaram, Susmitha Reddy
    Akinci, Tahir Cetin
    Topsakal, Oguzhan
    COMPUTERS, 2023, 12 (10)
  • [37] Automatic seizure detection by convolutional neural networks with computational complexity analysis
    Cimr, Dalibor
    Fujita, Hamido
    Tomaskova, Hana
    Cimler, Richard
    Selamat, Ali
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 229
  • [38] Epileptic seizure prediction and classification based on statistical features using LSTM fully connected neural network
    Goel, Sachin
    Agrawal, Rajeev
    Bharti, R. K.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (04) : 6003 - 6020
  • [39] Detection of Epileptic Seizure Event and Onset Using EEG
    Ahammad, Nabeel
    Fathima, Thasneem
    Joseph, Paul
    BIOMED RESEARCH INTERNATIONAL, 2014, 2014
  • [40] Multi-channel EEG based automatic epileptic seizure detection using iterative filtering decomposition and Hidden Markov Model
    Dash, Deba Prasad
    Kolekar, Maheshkumar H.
    Jha, Kamlesh
    COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 116