Automatic epileptic seizure detection using LSTM networks

被引:15
|
作者
Shekokar, Kishori Sudhir [1 ]
Dour, Shweta [2 ]
机构
[1] Navrachana Univ, Comp Sci & Engn Dept, Vadodara, India
[2] Navrachana Univ, Elect & Elect Engn Dept, Vadodara, India
关键词
Deep learning; CAD; EEG; Epilepsy; LSTM; Seizures; NEURAL-NETWORK; CLASSIFICATION;
D O I
10.1108/WJE-06-2021-0348
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Purpose The purpose of this work is to make a computer aided detection system for epileptic seizures. Epilepsy is a neurological disorder characterized as the recurrence of two or more unprovoked seizures. The common and significant tool for aiding in the identification of epilepsy is Electroencephalography (EEG). The EEG signals contain information about the electrical activity of the brain. Conventionally, clinicians study the EEG waveforms manually to detect epileptic abnormalities, which is very time-consuming and error-prone. Design/methodology/approach The authors have presented a three-layer long short-term memory network for the detection of epileptic seizures. Findings The network classifies between seizure and non-seizure with 99.5% accuracy only in 30 epochs. This makes the proposed methodology useful for real-time seizure detection. Originality/value This research work is original and not plagiarized.
引用
收藏
页码:224 / 229
页数:6
相关论文
共 50 条
  • [31] Deep Convolutional Bidirectional LSTM Recurrent Neural Network for Epileptic Seizure Detection
    Abdelhameed, Ahmed M.
    Daoud, Hisham G.
    Bayoumi, Magdy
    2018 16TH IEEE INTERNATIONAL NEW CIRCUITS AND SYSTEMS CONFERENCE (NEWCAS), 2018, : 139 - 143
  • [32] Automatic detection of epileptic seizure based on approximate entropy, recurrence quantification analysis and convolutional neural networks
    Gao, Xiaozeng
    Yan, Xiaoyan
    Gao, Ping
    Gao, Xiujiang
    Zhang, Shubo
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2020, 102
  • [33] Epileptic Seizure Detection using Micro Sensor
    Tonpe, Snehal V.
    Adhav, Yashwant G.
    Joshi, Atul K.
    2017 INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING (ICCSP), 2017, : 660 - 662
  • [34] Epileptic Seizure Detection using EEG Signals
    Khan, Irfan Mabood
    Khan, Mohd Maaz
    Farooq, Omar
    5TH INTERNATIONAL CONFERENCE ON COMPUTING AND INFORMATICS (ICCI 2022), 2022, : 111 - 117
  • [35] Epileptic Seizure Detection using HHT and SVM
    Chaurasiya, Rahul Kumar
    Jain, Khushbu
    Goutam, Shalini
    Manisha
    2015 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, SIGNALS, COMMUNICATION AND OPTIMIZATION (EESCO), 2015,
  • [36] Epileptic Seizure Detection Using Wristworn Biosensors
    Cogan, D.
    Nourani, M.
    Harvey, J.
    Nagaraddi, V.
    2015 37TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2015, : 5086 - 5089
  • [37] Epileptic Seizure Detection
    Nayak, K. P.
    Niranjan, U. C.
    4TH KUALA LUMPUR INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING 2008, VOLS 1 AND 2, 2008, 21 (1-2): : 191 - 194
  • [38] Automatic detection of epileptic seizure events using the time-frequency features and machine learning
    Zeng, Jiale
    Tan, Xiao-dan
    Zhan, Chang'an A.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 69
  • [39] Automatic Detection and Classification of Epileptic Seizure using Radial basis Function and Power Spectral Density
    Kumari, R. Shantha Selva
    Abirami, R.
    2019 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, SIGNAL PROCESSING AND NETWORKING (WISPNET 2019): ADVANCING WIRELESS AND MOBILE COMMUNICATIONS TECHNOLOGIES FOR 2020 INFORMATION SOCIETY, 2019, : 6 - 9
  • [40] Enhancing Epileptic Seizure Detection Using Convolutional Neural Networks and Data Augmentation Techniques
    Pedram, Raha
    Farzanehkari, Pooyan
    Chaibakhsh, Ali
    2023 30TH NATIONAL AND 8TH INTERNATIONAL IRANIAN CONFERENCE ON BIOMEDICAL ENGINEERING, ICBME, 2023, : 132 - 137