Automatic epileptic seizure detection using LSTM networks

被引:15
|
作者
Shekokar, Kishori Sudhir [1 ]
Dour, Shweta [2 ]
机构
[1] Navrachana Univ, Comp Sci & Engn Dept, Vadodara, India
[2] Navrachana Univ, Elect & Elect Engn Dept, Vadodara, India
关键词
Deep learning; CAD; EEG; Epilepsy; LSTM; Seizures; NEURAL-NETWORK; CLASSIFICATION;
D O I
10.1108/WJE-06-2021-0348
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Purpose The purpose of this work is to make a computer aided detection system for epileptic seizures. Epilepsy is a neurological disorder characterized as the recurrence of two or more unprovoked seizures. The common and significant tool for aiding in the identification of epilepsy is Electroencephalography (EEG). The EEG signals contain information about the electrical activity of the brain. Conventionally, clinicians study the EEG waveforms manually to detect epileptic abnormalities, which is very time-consuming and error-prone. Design/methodology/approach The authors have presented a three-layer long short-term memory network for the detection of epileptic seizures. Findings The network classifies between seizure and non-seizure with 99.5% accuracy only in 30 epochs. This makes the proposed methodology useful for real-time seizure detection. Originality/value This research work is original and not plagiarized.
引用
收藏
页码:224 / 229
页数:6
相关论文
共 50 条
  • [1] Residual and bidirectional LSTM for epileptic seizure detection
    Zhao, Wei
    Wang, Wen-Feng
    Patnaik, Lalit Mohan
    Zhang, Bao-Can
    Weng, Su-Jun
    Xiao, Shi-Xiao
    Wei, De-Zhi
    Zhou, Hai-Feng
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2024, 18
  • [2] Automatic Seizure Detection using Fully Convolutional Nested LSTM
    Li, Yang
    Yu, Zuyi
    Chen, Yang
    Yang, Chunfeng
    Li, Yue
    Li, X. Allen
    Li, Baosheng
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2020, 30 (04)
  • [3] Electroencephalogram for epileptic seizure detection using stacked bidirectional LSTM_GAP neural network
    Thara, D. K.
    Premasudha, B. G.
    Nayak, Ramesh Sunder
    Murthy, T., V
    Prabhu, G. Ananth
    Hanoon, Naeem
    EVOLUTIONARY INTELLIGENCE, 2021, 14 (02) : 823 - 833
  • [4] Epileptic Seizure Detection Using Convolution Neural Networks
    Sukaria, William
    Malasa, James
    Kumar, Shiu
    Kumar, Rahul
    Assaf, Mansour H.
    Groza, Voicu
    Petriu, Emil M.
    Das, Sunil R.
    2022 IEEE INTERNATIONAL SYMPOSIUM ON MEDICAL MEASUREMENTS AND APPLICATIONS (MEMEA 2022), 2022,
  • [5] Electroencephalogram for epileptic seizure detection using stacked bidirectional LSTM_GAP neural network
    D. K. Thara
    B. G. Premasudha
    Ramesh Sunder Nayak
    T. V. Murthy
    G. Ananth Prabhu
    Naeem Hanoon
    Evolutionary Intelligence, 2021, 14 : 823 - 833
  • [6] An Automatic Method for Epileptic Seizure Detection Based on Deep Metric Learning
    Duan, Lijuan
    Wang, Zeyu
    Qiao, Yuanhua
    Wang, Yue
    Huang, Zhaoyang
    Zhang, Baochang
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (05) : 2147 - 2157
  • [7] Automatic epileptic seizure detection using MSA-DCNN and LSTM techniques with EEG signals
    Anita, M.
    Kowshalya, A. Meena
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [8] Automatic epileptic seizure detection based on persistent homology
    Wang, Ziyu
    Liu, Feifei
    Shi, Shuhua
    Xia, Shengxiang
    Peng, Fulai
    Wang, Lin
    Ai, Sen
    Xu, Zheng
    FRONTIERS IN PHYSIOLOGY, 2023, 14
  • [9] Automatic prediction of epileptic seizure using hybrid deep ResNet-LSTM model
    Singh, Yajuvendra Pratap
    Lobiyal, Daya Krishan
    AI COMMUNICATIONS, 2023, 36 (01) : 57 - 72
  • [10] EEG-based epileptic seizure detection using deep learning techniques: A survey
    Xu, Jie
    Yan, Kuiting
    Deng, Zengqian
    Yang, Yankai
    Liu, Jin-Xing
    Wang, Juan
    Yuan, Shasha
    NEUROCOMPUTING, 2024, 610