Nonlinear stiffness of a magneto-rheological damper

被引:41
|
作者
Guo, DL [1 ]
Hu, HY
机构
[1] Nanjing Univ Aeronaut & Astronaut, Aeronaut Sci Key Lab Smart Mat & Struct, Nanjing 210016, Peoples R China
[2] Chinese Acad Sci, Inst Automat, Lab Complex Syst & Intelligence Sci, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
additional stiffness; equivalent damping; equivalent stiffness; hysteresis; magneto-rheological damper;
D O I
10.1007/s11071-005-6464-y
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The last decade has witnessed an important role of magneto-rheological dampers in the semi-active vibration control on the basis of empirical models. Those models established by fitting experimental data, however, do not offer any explicit expressions for the stiffness and the damping of magneto-rheological dampers. Hence, it is not easy for engineers to get any intuitive information about the effects of stiffness and damping of a magneto-rheological damper on the dynamic performance of a controlled system. To manifest the nonlinear properties of a magneto-rheological damper, this paper presents the hysteretic phenomena and the additional nonlinear stiffness of a typical magneto-rheological damper in terms of equivalent linear stiffness and equivalent linear damping. Then, it gives a brief discussion about the effect of nonlinear stiffness on the vibration control through the numerical simulations and an experiment for the semi-active suspension of a quarter car model with a magneto-rheological damper installed. Both numerical simulations and experimental results show that the additional nonlinear stiffness in the magneto-rheological damper is remarkable, and should be taken into consideration in the design of vibration control.
引用
收藏
页码:241 / 249
页数:9
相关论文
共 50 条
  • [21] Analysis of magnetic flux in magneto-rheological damper
    Purandare, Snehal
    Zambare, Hrishikesh
    Razban, Ali
    JOURNAL OF PHYSICS COMMUNICATIONS, 2019, 3 (07):
  • [22] Magnetic Circuit Design of Magneto-rheological Damper
    Luo, Jinglin
    Yang, Baokun
    Dong, Longlei
    APPLIED ELECTROMAGNETICS AND MECHANICS (II), 2009, 13 : 671 - 672
  • [23] Dynamic characteristics of magneto-rheological fluid damper
    Sunakoda, K
    Sodeyama, H
    Iwata, N
    Fujitani, H
    Soda, S
    SMART STRUCTURES AND MATERIALS 2000: DAMPING AND ISOLATION, 2000, 3989 : 194 - 203
  • [24] Modeling and analysis of a magneto-rheological shock damper
    Hou, Baolin
    Mehdi, Ahmadian
    Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 2006, 42 (04): : 173 - 178
  • [25] Magnetic circuit design for magneto-rheological damper
    Luo, Jinglin
    Yang, Baokun
    Dong, Longlei
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2010, 33 (1-2) : 815 - 822
  • [26] A nonlinear kinematic and dynamic modeling of Macpherson suspension systems with a magneto-rheological damper
    Dutta, Saikat
    Choi, Seung-Bok
    SMART MATERIALS AND STRUCTURES, 2016, 25 (03)
  • [27] Optimum Design of a Magnetic Circuit in a Magneto-rheological Damper
    Yu, Guojun
    Du, Chengbin
    Li, Zhiquan
    MECHANICAL AND ELECTRONICS ENGINEERING III, PTS 1-5, 2012, 130-134 : 1400 - 1403
  • [28] Review-Vane Type Magneto-rheological Damper
    Rakhio, Allah
    Dong Xiamin
    Gon, Chenpen
    Iqbal, Muhammad Nadeem
    Bhangwar, Sajjad
    Ali, Asif
    2017 IEEE 3RD INFORMATION TECHNOLOGY AND MECHATRONICS ENGINEERING CONFERENCE (ITOEC), 2017, : 426 - 429
  • [29] A NOVEL ROTARY MAGNETO-RHEOLOGICAL DAMPER FOR HAPTIC INTERFACES
    Topcu, Okan
    Tascioglu, Yigit
    Konukseven, Erhan Ilhan
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2015, VOL 4B, 2016,
  • [30] MODELING OF A MAGNETO-RHEOLOGICAL DAMPER USING SYSTEM IDENTIFICATION
    Kaul, Sudhir
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION 2010, VOL 11, 2012, : 61 - 74