Chaotic dynamics in the electroconvection system of a nematic liquid crystal

被引:9
作者
Delev, V. A. [1 ]
Scaldin, O. A. [1 ,2 ]
Batyrshin, E. S. [1 ]
Axelrod, E. G. [1 ]
机构
[1] Russian Acad Sci, Ufa Sci Ctr, Inst Phys Mol & Crystals, Ufa 450075, Bashkortostan, Russia
[2] Ufa State Aviat Tech Univ, Ufa 450000, Bashkortostan, Russia
基金
俄罗斯基础研究基金会;
关键词
ELECTROHYDRODYNAMIC INSTABILITY; STRANGE ATTRACTORS;
D O I
10.1134/S1063784211010087
中图分类号
O59 [应用物理学];
学科分类号
摘要
The transition from a steady domain structure to turbulence in the electroconvection system of a nematic under the action of a constant electric field is studied using the methods of optical and acoustic responses. The chaotic dynamics is investigated both by conventional methods (Fourier signal spectrum) and by methods of nonlinear dynamics. From the quantitative estimates of basic characteristics of the chaotic behavior (namely, the correlation dimension, leading Lyapunov exponent, K-entropy, and embedding dimension), one can conclude that temporal chaos arises in the system, giving rise to a strange attractor, as the control parameter increases at E > a parts per thousand yen E > (c) a parts per thousand 0.5. The fact that the distribution of laminar domains in the liquid-crystal layer depends on their length under the conditions of developed turbulence indicates that the dynamics of the nematic demonstrates the intermittent behavior.
引用
收藏
页码:8 / 14
页数:7
相关论文
共 50 条
  • [31] Influence of fullerenes C60 and single-walled carbon nanotubes on the Carr-Helfrich effect in nematic liquid crystal
    Ibragimov, Tahir D.
    OPTIK, 2021, 237
  • [33] Richness of chaotic dynamics in nonholonomic models of a celtic stone
    Gonchenko, Alexander S.
    Gonchenko, Sergey V.
    Kazakov, Alexey O.
    REGULAR & CHAOTIC DYNAMICS, 2013, 18 (05) : 521 - 538
  • [34] Chaotic Dynamics and Multistability in the Nonholonomic Model of a Celtic Stone
    Gonchenko, A. S.
    Gonchenko, S. V.
    Kazakov, A. O.
    Samylina, E. A.
    RADIOPHYSICS AND QUANTUM ELECTRONICS, 2019, 61 (10) : 773 - 786
  • [35] Regular and Chaotic Dynamics in the Rubber Model of a Chaplygin Top
    Borisov, Alexey V.
    Kazakov, Alexey O.
    Pivovarova, Elena N.
    REGULAR & CHAOTIC DYNAMICS, 2016, 21 (7-8) : 885 - 901
  • [36] Chaotic dynamics for two-dimensional tent maps
    Pumarino, Antonio
    Angel Rodriguez, Jose
    Carles Tatjer, Joan
    Vigil, Enrique
    NONLINEARITY, 2015, 28 (02) : 407 - 434
  • [37] Investigating chaotic wake dynamics past a flapping airfoil and the role of vortex interactions behind the chaotic transition
    Bose, Chandan
    Sarkar, Sunetra
    PHYSICS OF FLUIDS, 2018, 30 (04)
  • [38] On the intersection of a chaotic attractor and a chaotic repeller in the system of two adaptively coupled phase oscillators
    Emelianova, A. A.
    Nekorkin, V. I.
    CHAOS, 2019, 29 (11)
  • [39] Threshold voltage dynamics of chaotic RS flip-Flops
    Rahman, Aminur
    Blackmore, Denis
    CHAOS SOLITONS & FRACTALS, 2017, 103 : 555 - 566
  • [40] Connecting chaotic regions in the Coupled Brusselator System
    Drubi, F.
    Mayora-Cebollero, A.
    Mayora-Cebollero, C.
    Ibanez, S.
    Jover-Galtier, J. A.
    Lozano, A.
    Perez, L.
    Barrio, R.
    CHAOS SOLITONS & FRACTALS, 2023, 169