Surface acoustic wave properties of aluminum oxide films on lithium niobate

被引:5
|
作者
Shih, Wen-Ching [1 ]
Wang, Tzyy-Long [1 ]
Hsu, Li-Lun [1 ]
机构
[1] Tatung Univ, Grad Inst Electroopt Engn, Taipei 104, Taiwan
关键词
Aluminum oxide film; Electron beam evaporation; Lithium niobate; Surface acoustic wave; AL2O3; THIN-FILMS; CARBON-FILMS; DIELECTRIC-PROPERTIES; ELASTIC PROPERTIES; DIAMOND; CRYSTALLINE; MICROSTRUCTURE; DEPOSITION;
D O I
10.1016/j.tsf.2010.07.029
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Aluminum oxide (Al2O3) films have been deposited on lithium niobate (LiNbO3) substrates by electron beam evaporation without any interlayer between them to ensure a good adhesion of the Al2O3 films to LiNbO3 substrates. As Al2O3 thin films can sufficiently increase the surface acoustic wave (SAW) velocity, they can be used to improve the performance of the SAW device. The SAW phase velocity in the Al2O3LiNbO3 structure was found to increase with the insertion of an Al2O3 film, which can be attributed to the stiffening effect of the Al2O3 layer. The velocity change ratio of SAW was about 4.39% (at 304 MHz) for the Al2O3 (9.7 pin)/LiNbO3 sample. A comparison with other findings in literature reveals that this result is better than what is available from diamond-like carbon/SiC buffer layer/LiNbO3 structure, whose the velocity change ratio is 2%. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:7143 / 7146
页数:4
相关论文
共 50 条
  • [31] ION-IMPLANTED SURFACE-ACOUSTIC-WAVE GUIDES ON LITHIUM-NIOBATE
    HARTEMANN, P
    CAUVARD, P
    DESBOIS, D
    APPLIED PHYSICS LETTERS, 1978, 32 (05) : 266 - 268
  • [32] Surface acoustic wave generation and detection using graphene interdigitated transducers on lithium niobate
    Mayorov, A. S.
    Hunter, N.
    Muchenje, W.
    Wood, C. D.
    Rosamond, M.
    Linfield, E. H.
    Davies, A. G.
    Cunningham, J. E.
    APPLIED PHYSICS LETTERS, 2014, 104 (08)
  • [33] HIGH-PERFORMANCE LITHIUM NIOBATE ACOUSTIC SURFACE WAVE TRANSDUCERS AND DELAY LINES
    COLLINS, JH
    GERARD, HM
    SHAW, HJ
    APPLIED PHYSICS LETTERS, 1968, 13 (09) : 312 - &
  • [34] Shear Horizontal Surface Acoustic Wave COMSOL Modeling on Lithium Niobate Piezoelectric Substrate
    Ten, S. T.
    Hashim, U.
    Liu, W. W.
    Foo, K. L.
    Voon, C. H.
    Hisham, H.
    Nazwa, T.
    Ten, S. T.
    Sudin, A.
    Humaira, M. S. Nur
    2014 IEEE INTERNATIONAL CONFERENCE ON SEMICONDUCTOR ELECTRONICS (ICSE), 2014, : 104 - 107
  • [35] Stability improvement of surface acoustic wave motor using chemically reduced lithium niobate
    Shigematsu, Takashi
    Kurosawa, Minoru Kuribayashi
    TRANSDUCERS '07 & EUROSENSORS XXI, DIGEST OF TECHNICAL PAPERS, VOLS 1 AND 2, 2007,
  • [36] Growth of diamond film on single crystal lithium niobate for surface acoustic wave devices
    Jagannadham, K
    Lance, MJ
    Watkins, TR
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2004, 22 (04): : 1105 - 1109
  • [37] Lithium-Niobate-Based Surface Acoustic Wave Device Directly Integrated on IC
    Park, KyeongDong
    Esashi, Masayoshi
    Tanaka, Shuji
    2011 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2011, : 1956 - 1959
  • [38] Nanocomposite-Seeded Epitaxial Growth of Single-Domain Lithium Niobate Thin Films for Surface Acoustic Wave Devices
    Paldi, Robynne L.
    Qi, Zhimin
    Misra, Shikhar
    Lu, Juanjuan
    Sun, Xing
    Phuah, Xin Li
    Kalaswad, Matias
    Bischoff, Jay
    Branch, Darren W.
    Siddiqui, Aleem
    Wang, Haiyan
    ADVANCED PHOTONICS RESEARCH, 2021, 2 (06):
  • [39] Chemically reduced lithium niobate single crystals: Processing, properties and improved surface acoustic wave device fabrication and performance
    Bordui, PF
    Jundt, DH
    Standifer, EM
    Norwood, RG
    Sawin, RL
    Galipeau, JD
    JOURNAL OF APPLIED PHYSICS, 1999, 85 (07) : 3766 - 3769
  • [40] DEPOSITION PARAMETER STUDIES AND SURFACE-ACOUSTIC-WAVE CHARACTERIZATION OF PECVD SILICON-NITRIDE FILMS ON LITHIUM-NIOBATE
    HINES, JH
    MALOCHA, DC
    SUNDARAM, KB
    CASEY, KJ
    LEE, KR
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 1995, 42 (03) : 397 - 403