The origin of slow Alfvenic solar wind at solar minimum

被引:37
作者
Stansby, D. [1 ,5 ]
Matteini, L. [1 ,2 ]
Horbury, T. S. [1 ]
Perrone, D. [1 ,3 ]
D'Amicis, R. [3 ]
Bercic, L. [2 ,4 ]
机构
[1] Imperial Coll London, Dept Phys, London SW7 2AZ, England
[2] Univ Paris Diderot, Sorbonne Univ, Univ PSI, CNRS,Sorbonne Paris Cite,LESIA,Observ Paris, 5 Pl Jules Janssen, F-92195 Meudon, France
[3] INAF IAPS, Via Fosso del Cavaliere 100, I-00133 Rome, Italy
[4] Univ Florence, Phys & Astron Dept, Via Giovanni Sansone 1, I-50019 Sesto Fiorentino, Italy
[5] Univ Coll London, Mullard Space Sci Lab, Holmbury RH5 6NT, Surrey, England
基金
英国科学技术设施理事会;
关键词
Sun: heliosphere; solar wind; HELIUM ABUNDANCE; MAGNETIC-FIELD; SPEED; ACCELERATION; ULYSSES; PARAMETERS; ELECTRONS; 0.3-AU; MODEL; IONS;
D O I
10.1093/mnras/stz3422
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Although the origins of slow solar wind are unclear, there is increasing evidence that at least some of it is released in a steady state on overexpanded coronal hole magnetic field lines. This type of slow wind has similar properties to the fast solar wind, including strongly Alfvenic fluctuations. In this study, a combination of proton, alpha particle, and electron measurements are used to investigate the kinetic properties of a single interval of slow Alfvenic wind at 0.35 au. It is shown that this slow Alfvenic interval is characterized by high alpha particle abundances, pronounced alpha-proton differential streaming, strong proton beams, and large alpha-to-proton temperature ratios. These are all features observed consistently in the fast solar wind, adding evidence that at least some Alfvenic slow solar wind also originates in coronal holes. Observed differences between speed, mass flux, and electron temperature between slow Alfvenic and fast winds are explained by differing magnetic field geometry in the lower corona.
引用
收藏
页码:39 / 44
页数:6
相关论文
共 71 条
[1]   Slow Solar Wind: Observations and Modeling [J].
Abbo, L. ;
Ofman, L. ;
Antiochos, S. K. ;
Hansteen, V. H. ;
Harra, L. ;
Ko, Y. -K. ;
Lapenta, G. ;
Li, B. ;
Riley, P. ;
Strachan, L. ;
von Steiger, R. ;
Wang, Y. -M. .
SPACE SCIENCE REVIEWS, 2016, 201 (1-4) :55-108
[2]   The solar wind helium abundance: Variation with wind speed and the solar cycle [J].
Aellig, MR ;
Lazarus, AJ ;
Steinberg, JT .
GEOPHYSICAL RESEARCH LETTERS, 2001, 28 (14) :2767-2770
[3]  
ALTERMAN BL, 2018, APJ, V864, DOI DOI 10.3847/1538-4357/AAD23F
[4]   The Chemical Composition of the Sun [J].
Asplund, Martin ;
Grevesse, Nicolas ;
Sauval, A. Jacques ;
Scott, Pat .
ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS, VOL 47, 2009, 47 :481-522
[5]   EVIDENCE FOR A STRUCTURE-FREE STATE AT HIGH SOLAR-WIND SPEEDS [J].
BAME, SJ ;
ASBRIDGE, JR ;
FELDMAN, WC ;
GOSLING, JT .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1977, 82 (10) :1487-1492
[6]  
BASU S, 1995, MON NOT R ASTRON SOC, V276, P1402
[7]   LARGE-AMPLITUDE ALFVEN WAVES IN INTERPLANETARY MEDIUM .2. [J].
BELCHER, JW ;
DAVIS, L .
JOURNAL OF GEOPHYSICAL RESEARCH, 1971, 76 (16) :3534-+
[8]   Scattering of strahl electrons in the solar wind between 0.3 and 1 au: Helios observations [J].
Bercic, L. ;
Maksimovic, M. ;
Landi, S. ;
Matteini, L. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 486 (03) :3404-3414
[9]   Fast and slow wind from solar coronal holes [J].
Bravo, S ;
Stewart, GA .
ASTROPHYSICAL JOURNAL, 1997, 489 (02) :992-999
[10]   The Solar Wind as a Turbulence Laboratory [J].
Bruno, Roberto ;
Carbone, Vincenzo .
LIVING REVIEWS IN SOLAR PHYSICS, 2013, 10 (02) :7-+