TiO2 Inverse Opals Modified by Ag Nanoparticles: A Synergic Effect of Enhanced Visible-Light Absorption and Efficient Charge Separation for Visible-Light Photocatalysis

被引:11
作者
Thanh-Hiep Thi Le [1 ]
Thanh-Trang Bui [2 ]
Hao Van Bui [3 ,4 ]
Van-Duong Dao [5 ]
Loan Le Thi Ngoc [2 ]
机构
[1] Duy Tan Univ, Off Sci Res & Technol, Da Nang 550000, Vietnam
[2] Quy Nhon Univ, Fac Nat Sci, Quy Nhon 55113, Vietnam
[3] Phenikaa Univ, Fac Mat Sci & Engn, Hanoi 12116, Vietnam
[4] Phenikaa Univ, Fac Elect & Elect Engn, Hanoi 12116, Vietnam
[5] Phenikaa Univ, Fac Biotechnol Chem & Environm Engn, Hanoi 12116, Vietnam
关键词
titanium dioxide; inverse opals; visible-light photocatalysis; rifampicin degradation; charge separation; TITANIUM-DIOXIDE; HYDROGEN-PRODUCTION; BLACK TIO2; ANATASE; COMPOSITE; DEGRADATION; PERFORMANCE; MECHANISMS; BANDGAP; RUTILE;
D O I
10.3390/catal11070761
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This work reports on the synthesis, characterization, and photocatalytic performance of the TiO2 inverse opal nanostructure (IP-TiO2) and the IP-TiO2 modified by Ag nanoparticles (Ag@IP-TiO2). The IP-TiO2 is fabricated using polystyrene spheres as the template and TiCl4 as the precursor, and the Ag@IP-TiO2 is realized by photoreduction method. The morphological, structural, and optical properties of the materials are investigated by scanning electron microscopy, X-ray diffraction, ultraviolet-visible (UV-VIS) absorption spectroscopy, and photoluminescence spectroscopy. Their photocatalytic performances are studied by the degradation of rifampicin antibiotic under the visible-light irradiation generated by an LED lamp. The results demonstrate that the IP-TiO2 is composed of mesopores arranged in the honeycomb structure and strongly absorbs visible light in the wavelength range of 400-500 nm. This facilitates the visible-light catalytic activity of IP-TiO2, which is further enhanced by the surface modification by Ag nanoparticles. Our studies on the UV-VIS absorption and photoluminescent properties of the materials reveal that the presence of Ag nanoparticles not only enhances the visible-light absorption of IP-TiO2, but also reduces the recombination of photogenerated electrons and holes. These two factors create a synergic effect that causes the enhanced photocatalytic performance of Ag@IP-TiO2.
引用
收藏
页数:12
相关论文
共 50 条
[1]   Visible-light photocatalysis in nitrogen-doped titanium oxides [J].
Asahi, R ;
Morikawa, T ;
Ohwaki, T ;
Aoki, K ;
Taga, Y .
SCIENCE, 2001, 293 (5528) :269-271
[2]   Nitrogen-Doped Titanium Dioxide as Visible-Light-Sensitive Photocatalyst: Designs, Developments, and Prospects [J].
Asahi, Ryoji ;
Morikawa, Takeshi ;
Irie, Hiroshi ;
Ohwaki, Takeshi .
CHEMICAL REVIEWS, 2014, 114 (19) :9824-9852
[3]   A plasmonic photocatalyst consisting of sliver nanoparticles embedded in titanium dioxide [J].
Awazu, Koichi ;
Fujimaki, Makoto ;
Rockstuhl, Carsten ;
Tominaga, Junji ;
Murakami, Hirotaka ;
Ohki, Yoshimichi ;
Yoshida, Naoya ;
Watanabe, Toshiya .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (05) :1676-1680
[4]   A review on graphene–TiO2 and doped graphene–TiO2 nanocomposite photocatalyst for water and wastewater treatment [J].
Bhanvase B.A. ;
Shende T.P. ;
Sonawane S.H. .
Environmental Technology Reviews, 2017, 6 (01) :1-14
[5]   Black titanium dioxide (TiO2) nanomaterials [J].
Chen, Xiaobo ;
Liu, Lei ;
Huang, Fuqiang .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (07) :1861-1885
[6]   Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals [J].
Chen, Xiaobo ;
Liu, Lei ;
Yu, Peter Y. ;
Mao, Samuel S. .
SCIENCE, 2011, 331 (6018) :746-750
[7]   Silver nanoparticles doped TiO2 catalyzed Suzuki-coupling of bromoaryl with phenylboronic acid under visible light [J].
Chen, Yuning ;
Feng, Li .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY, 2020, 205
[8]   Inverse opal structured Ag/TiO2 plasmonic photocatalyst prepared by pulsed current deposition and its enhanced visible light photocatalytic activity [J].
Chen, Zhiyuan ;
Fang, Liang ;
Dong, Wen ;
Zheng, Fengang ;
Shen, Mingrong ;
Wang, Junling .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (03) :824-832
[9]   TiO2-graphene nanocomposites for photocatalytic hydrogen production from splitting water [J].
Cheng, Ping ;
Yang, Zhi ;
Wang, Hong ;
Cheng, Wei ;
Chen, Mingxia ;
Shangguan, Wenfeng ;
Ding, Guifu .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (03) :2224-2230
[10]   Hierarchical Porous Carbonized Co3O4 Inverse Opals via Combined Block Copolymer and Colloid Templating as Bifunctional Electrocatalysts in Li-O2 Battery [J].
Cho, Seol A. ;
Jang, Yu Jin ;
Lim, Hee-Dae ;
Lee, Ji-Eun ;
Jang, Yoon Hee ;
Trang-Thi Hong Nguyen ;
Mota, Filipe Marques ;
Fenning, David P. ;
Kang, Kisuk ;
Shao-Horn, Yang ;
Kim, Dong Ha .
ADVANCED ENERGY MATERIALS, 2017, 7 (21)