On packing Hamilton cycles in ε-regular graphs

被引:43
作者
Frieze, A [1 ]
Krivelevich, M
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[2] Tel Aviv Univ, Dept Math, Raymond & Beverly Sackler Fac Exact Sci, IL-69978 Tel Aviv, Israel
基金
以色列科学基金会; 美国国家科学基金会;
关键词
regular graphs; Hamilton cycles;
D O I
10.1016/j.jctb.2004.12.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph G = (V, E) on n vertices is (alpha, epsilon)-regular if its minimal degree is at least an, and for every pair of disjoint subsets S, T c V of cardinalities at least m, the number of edges e(S, T) between S and T satisfies vertical bar e(S,T)/vertical bar S vertical bar vertical bar T vertical bar - alpha vertical bar <= e. We prove that if alpha >= epsilon > 0 are not too small, then every (alpha, epsilon) -regular graph on n vertices contains a family of (alpha/2 - O(epsilon))n edge-disjoint Hamilton cycles. As a consequence we derive that for every constant 0 < p < 1, with high probability in the random graph G(n p), almost all edges can be packed into edge-disjoint Hamilton cycles. A similar result is proven for the directed case. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:159 / 172
页数:14
相关论文
共 18 条
[1]   Problems and results in extremal combinatorics - I [J].
Alon, N .
DISCRETE MATHEMATICS, 2003, 273 (1-3) :31-53
[2]  
[Anonymous], 1891, Acta Mathematica, DOI DOI 10.1007/BF02392606
[3]  
BOLLOBAS B, 1985, ANN DISCRETE MATH, V28, P23
[4]  
Bregman L.M., 1973, SOVIET MATH DOKL, V14, P945
[5]  
EGORYCHEV GP, 1981, DOKL AKAD NAUK SSSR+, V258, P1041
[6]  
Falikman D. I., 1981, Mat Zametki, V29, P931
[7]   Hamilton cycles in random subgraphs of pseudo-random graphs [J].
Frieze, A ;
Krivelevich, M .
DISCRETE MATHEMATICS, 2002, 256 (1-2) :137-150
[8]  
Frieze A, 2000, ELECTRON J COMB, V7, pR57
[9]  
FRIEZE AM, IN PRESS GAME JUMBLE
[10]   Advances on the Hamiltonian problem - A survey [J].
Gould, RJ .
GRAPHS AND COMBINATORICS, 2003, 19 (01) :7-52