ON PILLAI'S PROBLEM WITH TRIBONACCI NUMBERS AND POWERS OF 2

被引:22
作者
Bravo, Jhon J. [1 ]
Luca, Florian [2 ,3 ]
Yazan, Karina [1 ]
机构
[1] Univ Cauca, Dept Matemat, Calle 5 4-70, Popayan, Colombia
[2] Univ Witwatersrand, Sch Math, Private Bag X3, ZA-2050 Johannesburg, South Africa
[3] Univ Ostrava, Fac Sci, Dept Math, 30 Dubna 22, CZ-70103 Ostrava 1, Czech Republic
关键词
Tribonacci numbers; linear forms in logarithms; reduction method; FIBONACCI;
D O I
10.4134/BKMS.b160486
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Tribonacci sequence {T-n}(n >= 0) resembles the Fibonacci sequence in that it starts with the values 0, 1, 1, and each term afterwards is the sum of the preceding three terms. In this paper, we find all integers c having at least two representations as a difference between a Tribonacci number and a power of 2. This paper continues the previous work [5].
引用
收藏
页码:1069 / 1080
页数:12
相关论文
共 16 条
[1]   EQUATIONS 3X2-2=Y2 AND 8X2-7=Z2 [J].
BAKER, A ;
DAVENPOR.H .
QUARTERLY JOURNAL OF MATHEMATICS, 1969, 20 (78) :129-&
[2]   On a conjecture about repdigits in k-generalized Fibonacci sequences [J].
Bravo, Jhon J. ;
Luca, Florian .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 82 (3-4) :623-639
[3]   Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers [J].
Bugeaud, Yann ;
Mignotte, Maurice ;
Siksek, Samir .
ANNALS OF MATHEMATICS, 2006, 163 (03) :969-1018
[4]   On a variant of Pillai's problem [J].
Chim, Kwok Chi ;
Pink, Istvan ;
Ziegler, Volker .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (07) :1711-1727
[5]   On a problem of Pillai with Fibonacci numbers and powers of 2 [J].
Ddamulira, Mahadi ;
Luca, Florian ;
Rakotomalala, Mihaja .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2017, 127 (03) :411-421
[6]  
Dresden GPB, 2014, J INTEGER SEQ, V17
[7]   A generalization of a theorem of Baker and Davenport [J].
Dujella, A ;
Petho, A .
QUARTERLY JOURNAL OF MATHEMATICS, 1998, 49 (195) :291-306
[8]  
Herschfeld A., 1936, B AM MATH SOC, V42, P231, DOI 10.1090/S0002-9904-1936-06275-0
[9]  
Herschfeld A., 1935, B AM MATH SOC, V41, P631
[10]   An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. II [J].
Matveev, EM .
IZVESTIYA MATHEMATICS, 2000, 64 (06) :1217-1269