Unified Poincare and Hardy inequalities with sharp constants for convex domains

被引:49
作者
Avkhadiev, Farit G.
Wirths, Karl-Joachim [1 ]
机构
[1] Kazan VI Lenin State Univ, Chebotarev Res Inst, Kazan 420008, Russia
[2] TU Braunschweig, Inst Anal & Algebra, D-38106 Braunschweig, Germany
来源
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2007年 / 87卷 / 8-9期
关键词
Poincare inequality; Hardy inequality; convex domain; Bessel functions;
D O I
10.1002/zamm.200710342
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Q be an n-dimensional convex domain, and let nu is an element of [0, 1/2]. For all f is an element of H-0(1) (Omega) we prove the inequality [GRAPHICS] where delta = dist(x, partial derivative Omega), delta(0) = sup delta. The factor lambda(2)(nu) is sharp for all dimensions, lambda(nu) being the first positive root of the Lamb type equation J(nu)(lambda(nu)) + 2 lambda(nu)J(nu)'(lambda(nu)) = 0 for Bessel's functions. In particular, the case nu = 0 with lambda(0) = 07 940... presents a new sharp form of the Hardy type inequality due to Brezis and Marcus, while in the case nu = 1/2 with lambda(1/2) = pi/2 we obtain a unified proof of an isoperimetric inequality due to 1/2 Poincare for n = 1, Hersch for n = 2 and Payne and Stakgold for n >= 3. A generalization. when the latter integral is replaced by the integral integral(Omega) vertical bar f vertical bar(2)/delta(2-m) dx, m > 0, is proved, too. As a special case, we obtain the sharp inequality [GRAPHICS] where j(nu) is the first positive zero of J(nu).
引用
收藏
页码:632 / 642
页数:11
相关论文
共 21 条
[1]  
Abramovitz M., 1968, HDB MATH FUNCTIONS
[2]  
[Anonymous], 1957, VORLESUNGEN INHALT O
[3]  
Avkhadiev F. G., 2006, T MAT I, V255, P8
[4]  
AVKHADIEV FG, 2006, J MATH, V21, P3
[5]  
Bandle C, 1998, MATH APPL, V430, P97
[6]  
Bandle C., 1980, ISOPERIMETRIC INEQUA
[7]  
Brezis H., 1997, ANN SC NORM PISA, V25, P217
[8]  
*COMM CALC MATH TA, 2007, BRIT ASS ADV SCI M 1, V6
[9]  
DAVIES E. B, 1999, Oper. Theory Adv. Appl., V110, P55
[10]   The Hardy constant [J].
Davies, EB .
QUARTERLY JOURNAL OF MATHEMATICS, 1995, 46 (184) :417-431