Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals

被引:354
作者
Meers, E
Ruttens, A
Hopgood, MJ
Samson, D
Tack, FMG
机构
[1] Univ Ghent, Lab Analyt Chem & Appl Ecochem, Dept Appl Analyt & Phys Chem, B-9000 Ghent, Belgium
[2] Limburgs Univ Ctr, Ctr Environm Sci, B-3590 Diepenbeek, Belgium
[3] Univ Reading, Sch Human & Environm Sci, Dept Soil Sci, Reading RG6 2AH, Berks, England
关键词
phytoextraction; EDDS; EDTA; heavy metals; Helianthus annuus;
D O I
10.1016/j.chemosphere.2004.09.047
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Phytoextraction has been proposed as an alternative remediation technology for soils polluted with heavy metals or radionuclides, but is generally conceived as too slow working. Enhancing the accumulation of trace pollutants in harvestable plant tissues is a prerequisite for the technology to be practically applicable. The chelating aminopolycarboxylic acid, ethylene diamine tetraacetate (EDTA), has been found to enhance shoot accumulation of heavy metals. However, the use of EDTA in phytoextraction may not be suitable due to its high environmental persistence, which may lead to groundwater contamination. This paper aims to assess whether ethylene diamine disuccinate (EDDS), a biodegradable chelator, can be used for enhanced phytoextraction purposes. A laboratory experiment was conducted to examine mobilisation of Cd, Cu, Cr, Ni, Pb and Zn into the soil solution upon application of EDTA or EDDS. The longevity of the induced mobilisation was monitored for a period of 40 days after application. Estimated effect half lives ranged between 3.8 and 7.5 days for EDDS, depending on the applied dose. The minimum observed effect half life of EDTA was 36 days, while for the highest applied dose no decrease was observed throughout the 40 day period of the mobilisation experiment. Performance of EDTA and EDDS for phytoextraction was evaluated by application to Helianthus annuus. Two other potential chelators, known for their biodegradability in comparison to EDTA, were tested in the plant experiment: nitrilo acetic acid (NTA) and citric acid. Uptake of heavy metals was higher in EDDS-treated pots than in EDTA-treated pots. The effects were still considered insufficiently high to consider efficient remediation. This may be partly due to the choice of timing for application of the soil amendment. Fixing the time of application at an earlier point before harvest may yield better results. NTA and citric acid induced no significant effects on heavy metal uptake. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1011 / 1022
页数:12
相关论文
共 33 条
[1]  
Allison L.E., 1965, METHODS SOIL ANAL 2, P1367, DOI DOI 10.2134/AGRONMONOGR9.2.C39
[2]   HEAVY-METAL ACCUMULATION AND TOLERANCE IN BRITISH POPULATIONS OF THE METALLOPHYTE THLASPI-CAERULESCENS J-AND-C-PRESL (BRASSICACEAE) [J].
BAKER, AJM ;
REEVES, RD ;
HAJAR, ASM .
NEW PHYTOLOGIST, 1994, 127 (01) :61-68
[3]  
BAKER AJM, 1991, SITU BIORECLAMATION, P539
[4]   PHYTOREMEDIATION POTENTIAL OF THLASPI-CAERULESCENS AND BLADDER CAMPION FOR ZINC-CONTAMINATED AND CADMIUM-CONTAMINATED SOIL [J].
BROWN, SL ;
CHANEY, RL ;
ANGLE, JS ;
BAKER, AJM .
JOURNAL OF ENVIRONMENTAL QUALITY, 1994, 23 (06) :1151-1157
[5]   Environmental fate and microbial degradation of aminopolycarboxylic acids [J].
Bucheli-Witschel, M ;
Egli, T .
FEMS MICROBIOLOGY REVIEWS, 2001, 25 (01) :69-106
[6]   EPICphase, a version of the EPIC model simulating the effects of water and nitrogen stress on biomass and yield, taking account of developmental stages: validation on maize, sunflower, sorghum, soybean and winter wheat [J].
Cabelguenne, M ;
Debaeke, P ;
Bouniols, A .
AGRICULTURAL SYSTEMS, 1999, 60 (03) :175-196
[7]  
CEENAEME J, 2001, MIRA T 2001 ENV REPO, P421
[8]  
Chaney R. L., 1983, Land treatment of hazardous wastes, P50
[9]   EDTA and HEDTA effects on Cd, Cr, and Ni uptake by Helianthus annuus [J].
Chen, H ;
Cutright, T .
CHEMOSPHERE, 2001, 45 (01) :21-28
[10]   Chelate-assisted phytoextraction of lead from contaminated soils [J].
Cooper, EM ;
Sims, JT ;
Cunningham, SD ;
Huang, JW ;
Berti, WR .
JOURNAL OF ENVIRONMENTAL QUALITY, 1999, 28 (06) :1709-1719