SIEVE ESTIMATION OF CONSTANT AND TIME-VARYING COEFFICIENTS IN NONLINEAR ORDINARY DIFFERENTIAL EQUATION MODELS BY CONSIDERING BOTH NUMERICAL ERROR AND MEASUREMENT ERROR

被引:79
作者
Xue, Hongqi [1 ]
Miao, Hongyu [1 ]
Wu, Hulin [1 ]
机构
[1] Univ Rochester, Sch Med & Dent, Dept Biostat & Computat Biol, Rochester, NY 14642 USA
关键词
Nonlinear least squares; ordinary differential equation; Runge-Kutta algorithm; sieve approach; spline smoothing; time-varying parameter; PARAMETER-ESTIMATION; EFFICIENT ESTIMATION; LEAST-SQUARES; GLOBAL IDENTIFIABILITY; DYNAMIC-MODELS; HIV DYNAMICS; REGRESSION; OPTIMIZATION; CONVERGENCE; ASYMPTOTICS;
D O I
10.1214/09-AOS784
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article considers estimation of constant and time-varying coefficients in nonlinear ordinary differential equation (ODE) models where analytic closed-form solutions are not available. The numerical solution-based nonlinear least squares (NLS) estimator is investigated in this study. A numerical algorithm such as the Runge-Kutta method is used to approximate the ODE solution. The asymptotic properties are established for the proposed estimators considering both numerical error and measurement error. The B-spline is used to approximate the time-varying coefficients, and the corresponding asymptotic theories in this case are investigated under the framework of the sieve approach. Our results show that if the maximum step size of the p-order numerical algorithm goes to zero at a rate faster than n(-1)/(p boolean AND 4), the numerical error is negligible compared to the measurement error. This result provides a theoretical guidance in selection of the step size for numerical evaluations of ODEs. Moreover, we have shown that the numerical solution-based NLS estimator and the sieve NLS estimator are strongly consistent. The sieve estimator of constant parameters is asymptotically normal with the same asymptotic co-variance as that of the case where the true ODE solution is exactly known, while the estimator of the time-varying parameter has the optimal convergence rate under some regularity conditions. The theoretical results are also developed for the case when the step size of the ODE numerical solver does not go to zero fast enough or the numerical error is comparable to the measurement error. We illustrate our approach with both simulation studies and clinical data on HIV viral dynamics.
引用
收藏
页码:2351 / 2387
页数:37
相关论文
共 93 条
  • [1] Adams B. M., 2005, THESIS N CAROLINA ST
  • [2] [Anonymous], 1999, Epidemic modeling, an introduction
  • [3] [Anonymous], P PAC S BIOC
  • [4] Global identifiability of nonlinear models of biological systems
    Audoly, S
    Bellu, G
    D'Angiò, L
    Saccomani, MP
    Cobelli, C
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2001, 48 (01) : 55 - 65
  • [5] BABENKO VF, 1996, MULTIVARIATE APPROXI, P1
  • [6] Bard Y., 1974, Nonlinear parameter estimation
  • [7] BELLMAN R, 1970, Mathematical Biosciences, V7, P329, DOI 10.1016/0025-5564(70)90132-X
  • [8] PARAMETER FITTING IN DYNAMIC-MODELS
    BENSON, M
    [J]. ECOLOGICAL MODELLING, 1979, 6 (02) : 97 - 115
  • [9] Bickel P. J., 1993, EFFICIENT ADAPTIVE E
  • [10] BROOKMEYER R, 1994, AIDS EPIDEMIOLOGY QU, V23