Tropical Cyclone Intensity Evolution Modeled as a Dependent Hidden Markov Process

被引:23
作者
Jing, Renzhi [1 ]
Lin, Ning [1 ]
机构
[1] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA
基金
美国海洋和大气管理局; 美国国家科学基金会;
关键词
Atmosphere; Hurricanes; typhoons; Climatology; Statistical forecasting; Stochastic models; Risk assessment; PREDICTION SCHEME SHIPS; RAPID INTENSIFICATION; POTENTIAL INTENSITY; ATLANTIC; INDEX; WINDS; DECAY;
D O I
10.1175/JCLI-D-19-0027.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A hidden Markov model is developed to simulate tropical cyclone intensity evolution dependent on the surrounding large-scale environment. The model considers three unobserved (hidden) discrete states of storm intensity change and associates each state with a probability distribution of intensity change. The storm's transit from one state to another is described as a Markov chain. Both the intensity change and state transit components of the model are dependent on environmental variables including potential intensity, vertical wind shear, relative humidity, and ocean feedback. This Markov Environment-Dependent Hurricane Intensity Model (MeHiM) is used to simulate the evolution of storm intensity along the storm track over the ocean, and a simple decay model is added to estimate the intensity change when the storm moves over land. Data for the North Atlantic (NA) basin from 1979 to 2014 (555 storms) are used for model development and evaluation. Probability distributions of 6- and 24-h intensity change, lifetime maximum intensity, and landfall intensity based on model simulations and observations compare well. Although the MeHiM is still limited in fully describing rapid intensification, it shows a significant improvement over previous statistical models (e.g., linear, nonlinear, and finite mixture models).
引用
收藏
页码:7837 / 7855
页数:19
相关论文
共 53 条
  • [1] [Anonymous], 2007, EM ALGORITHM EXTENSI
  • [2] Dynamic Potential Intensity: An improved representation of the ocean's impact on tropical cyclones
    Balaguru, Karthik
    Foltz, Gregory R.
    Leung, L. Ruby
    D' Asaro, Eric
    Emanuel, Kerry A.
    Liu, Hailong
    Zedler, Sarah E.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (16) : 6739 - 6746
  • [3] Evaluation of the ECMWF ocean reanalysis system ORAS4
    Balmaseda, Magdalena Alonso
    Mogensen, Kristian
    Weaver, Anthony T.
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2013, 139 (674) : 1132 - 1161
  • [4] The operational GFDL coupled hurricane-ocean prediction system and a summary of its performance
    Bender, Morris A.
    Ginis, Isaac
    Tuleya, Robert
    Thomas, Biju
    Marchok, Timothy
    [J]. MONTHLY WEATHER REVIEW, 2007, 135 (12) : 3965 - 3989
  • [5] Low frequency variability of tropical cyclone potential intensity - 1. Interannual to interdecadal variability
    Bister, M
    Emanuel, KA
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2002, 107 (D24) : ACL26 - 1
  • [6] Dissipative heating and hurricane intensity
    Bister, M
    Emanuel, KA
    [J]. METEOROLOGY AND ATMOSPHERIC PHYSICS, 1998, 65 (3-4) : 233 - 240
  • [7] Tropical cyclones in climate models
    Camargo, Suzana J.
    Wing, Allison A.
    [J]. WILEY INTERDISCIPLINARY REVIEWS-CLIMATE CHANGE, 2016, 7 (02) : 211 - 237
  • [8] Cappe Olivier, 2006, Inference in Hidden Markov Models
  • [9] Mixed layer depth over the global ocean:: An examination of profile data and a profile-based climatology -: art. no. C12003
    de Boyer Montégut, C
    Madec, G
    Fischer, AS
    Lazar, A
    Iudicone, D
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2004, 109 (C12) : 1 - 20
  • [10] The ERA-Interim reanalysis: configuration and performance of the data assimilation system
    Dee, D. P.
    Uppala, S. M.
    Simmons, A. J.
    Berrisford, P.
    Poli, P.
    Kobayashi, S.
    Andrae, U.
    Balmaseda, M. A.
    Balsamo, G.
    Bauer, P.
    Bechtold, P.
    Beljaars, A. C. M.
    van de Berg, L.
    Bidlot, J.
    Bormann, N.
    Delsol, C.
    Dragani, R.
    Fuentes, M.
    Geer, A. J.
    Haimberger, L.
    Healy, S. B.
    Hersbach, H.
    Holm, E. V.
    Isaksen, L.
    Kallberg, P.
    Koehler, M.
    Matricardi, M.
    McNally, A. P.
    Monge-Sanz, B. M.
    Morcrette, J. -J.
    Park, B. -K.
    Peubey, C.
    de Rosnay, P.
    Tavolato, C.
    Thepaut, J. -N.
    Vitart, F.
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (656) : 553 - 597