Chaos, ergodicity, and equilibria in a quantum Kac model

被引:3
|
作者
Carlen, Eric A. [1 ,2 ,3 ]
Carvalho, Maria C. [1 ,2 ]
Loss, Michael P. [2 ]
机构
[1] Rutgers State Univ, Dept Math, Hill Ctr, 110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
[2] Univ Lisbon, CMAF CIO, P-1749016 Lisbon, Portugal
[3] Georgia Tech, Sch Math, Atlanta, GA 80332 USA
基金
美国国家科学基金会;
关键词
Quantum Master Equation; Completely Positive; Equilibrium; ENTROPY PRODUCTION; KINETIC-THEORY; SPECTRAL GAP; MASTER; CONJECTURE; MAPS;
D O I
10.1016/j.aim.2019.106827
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce quantum versions of the Kac Master Equation and the Kac Boltzmann Equation. We study the steady states of each of these equations, and prove a propagation of chaos theorem that relates them. The Quantum Kac Master Equation (QKME) describes a quantum Markov semigroup P-N,P-t, while the Kac Boltzmann Equation describes a non-linear evolution of density matrices on the single particle state space. All of the steady states of the N particle quantum system described by the QKME are separable, and thus the evolution described by the QKME is entanglement breaking. The results set the stage for a quantitative study of approach to equilibrium in quantum kinetic theory, and a quantitative study of the rate of destruction of entanglement in a class of quantum Markov semigroups describing binary interactions. (C) 2019 Published by Elsevier Inc.
引用
收藏
页数:50
相关论文
共 50 条
  • [41] Propagation of Chaos for the Thermostatted Kac Master Equation
    Carlen, Eric
    Mustafa, Dawan
    Wennberg, Bernt
    JOURNAL OF STATISTICAL PHYSICS, 2015, 158 (06) : 1341 - 1378
  • [42] QUANTUM ERGODICITY AND A QUANTUM MEASURE ALGEBRA
    STECHEL, EB
    JOURNAL OF CHEMICAL PHYSICS, 1985, 82 (01): : 364 - 371
  • [43] Seeking equilibrium leads to chaos: Multiple equilibria regulation model
    Katerelos, ID
    Koulouris, AG
    JASSS-THE JOURNAL OF ARTIFICIAL SOCIETIES AND SOCIAL SIMULATION, 2004, 7 (02):
  • [44] Quantum signatures of chaos or quantum chaos?
    Bunakov, V. E.
    PHYSICS OF ATOMIC NUCLEI, 2016, 79 (06) : 995 - 1009
  • [45] Quantum signatures of chaos or quantum chaos?
    V. E. Bunakov
    Physics of Atomic Nuclei, 2016, 79 : 995 - 1009
  • [46] Robust quantum computation of the kicked Harper model and quantum chaos
    Ye Bin
    Gu Rui-Jun
    Xu Wen-Bo
    ACTA PHYSICA SINICA, 2007, 56 (07) : 3709 - 3718
  • [47] QUANTUM CHAOS IN THE DRESSED DICKE-MODEL
    GOROKHOV, AV
    RUCHKOV, VV
    IZVESTIYA AKADEMII NAUK SERIYA FIZICHESKAYA, 1994, 58 (08): : 201 - 205
  • [48] Chaos and the quantum phase transition in the Dicke model
    Emary, C
    Brandes, T
    PHYSICAL REVIEW E, 2003, 67 (06): : 1 - 066203
  • [49] Discrete Graphs - A Paradigm Model for Quantum Chaos
    Smilansky, Uzy
    CHAOS, 2013, 66 : 97 - 124
  • [50] Quantum chaos in the Dicke model and its variants
    Tiwari, Devvrat
    Banerjee, Subhashish
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2023, 479 (2278):