Chaos, ergodicity, and equilibria in a quantum Kac model

被引:3
|
作者
Carlen, Eric A. [1 ,2 ,3 ]
Carvalho, Maria C. [1 ,2 ]
Loss, Michael P. [2 ]
机构
[1] Rutgers State Univ, Dept Math, Hill Ctr, 110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
[2] Univ Lisbon, CMAF CIO, P-1749016 Lisbon, Portugal
[3] Georgia Tech, Sch Math, Atlanta, GA 80332 USA
基金
美国国家科学基金会;
关键词
Quantum Master Equation; Completely Positive; Equilibrium; ENTROPY PRODUCTION; KINETIC-THEORY; SPECTRAL GAP; MASTER; CONJECTURE; MAPS;
D O I
10.1016/j.aim.2019.106827
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce quantum versions of the Kac Master Equation and the Kac Boltzmann Equation. We study the steady states of each of these equations, and prove a propagation of chaos theorem that relates them. The Quantum Kac Master Equation (QKME) describes a quantum Markov semigroup P-N,P-t, while the Kac Boltzmann Equation describes a non-linear evolution of density matrices on the single particle state space. All of the steady states of the N particle quantum system described by the QKME are separable, and thus the evolution described by the QKME is entanglement breaking. The results set the stage for a quantitative study of approach to equilibrium in quantum kinetic theory, and a quantitative study of the rate of destruction of entanglement in a class of quantum Markov semigroups describing binary interactions. (C) 2019 Published by Elsevier Inc.
引用
收藏
页数:50
相关论文
共 50 条
  • [31] Quantum Chaos in the Extended Dicke Model
    Wang, Qian
    ENTROPY, 2022, 24 (10)
  • [32] SIMPLE-MODEL FOR QUANTUM CHAOS
    KIM, JW
    SU, WP
    PHYSICAL REVIEW E, 1994, 50 (02) : 1019 - 1023
  • [33] Quantum Signatures of Chaos in Anisotropic Quantum Rabi Model
    Wang, Shangyun
    Chen, Songbai
    Jing, Jiliang
    Wang, Jieci
    Fan, Heng
    ADVANCED QUANTUM TECHNOLOGIES, 2025,
  • [34] Quantum chaos in the sparse SYK model
    Orman, Patrick
    Gharibyan, Hrant
    Preskill, John
    JOURNAL OF HIGH ENERGY PHYSICS, 2025, (02):
  • [35] Chaos in a model of an open quantum system
    Kronz, FM
    PHILOSOPHY OF SCIENCE, 2000, 67 (03) : S446 - S453
  • [36] Kac-Moody algebras and controlled chaos
    Wesley, Daniel H.
    CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (04) : F7 - F13
  • [37] QUANTUM ERGODICITY ON THE SPHERE
    ZELDITCH, S
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 146 (01) : 61 - 71
  • [38] A connection between mixing and Kac's chaos*
    Androulakis, George
    Musulin, Rade
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2019, 34 (01): : 113 - 129
  • [39] Chaos for rescaled measures on Kac's sphere
    Cortez, Roberto
    Tossounian, Hagop
    ELECTRONIC JOURNAL OF PROBABILITY, 2023, 28
  • [40] Propagation of Chaos for the Thermostatted Kac Master Equation
    Eric Carlen
    Dawan Mustafa
    Bernt Wennberg
    Journal of Statistical Physics, 2015, 158 : 1341 - 1378