A Particle Swarm Optimization Based on Dynamic Parameter Modification

被引:5
作者
Zhang, Yingchao [1 ,2 ]
Xiong, Xiong [2 ]
Chen, Chao [2 ]
Huang, Xinyi [2 ]
机构
[1] NUIST, Acad Informat & Syst Sci, Nanjing 210044, Jiangsu, Peoples R China
[2] NUIST, Sch Informat & Control Engn, Nanjing 210044, Peoples R China
来源
ADVANCES IN SCIENCE AND ENGINEERING, PTS 1 AND 2 | 2011年 / 40-41卷
关键词
particle swarm optimization; dynamic parameter modification; DPSO;
D O I
10.4028/www.scientific.net/AMM.40-41.201
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A new particle swarm optimization based on dynamic parameter modification is proposed in this paper (Dynamic Parameter Modification Particle Swarm Optimizer, DPSO). In DPSO algorithm, w is doing oscillating decay breaking through the constraint of topical linear decreasing, and the Euclidean distance vertical bar p(i) - x(i)(t)vertical bar, and vertical bar p(g) - x(i)(t)vertical bar is calculated, which respectively stand for the Euclidean distances form the position X-i, of particle i to the best position P-i that the particle has passed and the best position that all the particles have passed under the time t. Parameters c(1) and c(2) of topical PSO are modified dynamically based on the comparison of vertical bar p(i) - x(i)(t)vertical bar, and vertical bar p(g) - x(i)(t)vertical bar in order to coordinate between global search and local search. Then find out the optimal value of Goldstein-Price function using topical PSO and the improved DPSO respectively, and the results demonstrate that compared to topical PSO, DPSO algorithm avoids falling into the local minimum and improves the search efficiency.
引用
收藏
页码:201 / +
页数:2
相关论文
共 50 条
  • [21] Dual-archive-based particle swarm optimization for dynamic optimization
    Liu, Xiao-Fang
    Zhou, Yu-Ren
    Yu, Xue
    Lin, Ying
    APPLIED SOFT COMPUTING, 2019, 85
  • [22] Particle swarm optimization with dynamic local search for frequency modulation parameter identification
    Department of Fire Engineering, The Chinese People's Armed Police Force Academy, Langfang 065000, China
    不详
    Chen, L. (chenhb_2011@yahoo.cn), 2012, Advanced Institute of Convergence Information Technology (04) : 189 - 195
  • [23] Evacuation dynamic and exit optimization of a supermarket based on particle swarm optimization
    Li, Lin
    Yu, Zhonghai
    Chen, Yang
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 416 : 157 - 172
  • [24] Dynamic aerodynamic parameter estimation using a dynamic particle swarm optimization algorithm for rolling airframes
    Ayham Mohamad
    Jalal Karimi
    Alireza Naderi
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42
  • [25] Dynamic aerodynamic parameter estimation using a dynamic particle swarm optimization algorithm for rolling airframes
    Mohamad, Ayham
    Karimi, Jalal
    Naderi, Alireza
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2020, 42 (11)
  • [26] A dynamic chaotic mutation based particle swarm optimization for dynamic optimization of biochemical process
    Wang, Kangtai
    Li, Fupeng
    2017 4TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING (ICISCE), 2017, : 788 - 791
  • [27] Study on parameter effect of particle swarm optimization
    Liu Chao-wei
    Huang De-xian
    PROCEEDINGS OF 2004 CHINESE CONTROL AND DECISION CONFERENCE, 2004, : 215 - +
  • [28] A particle swarm optimization based memetic algorithm for dynamic optimization problems
    Hongfeng Wang
    Shengxiang Yang
    W. H. Ip
    Dingwei Wang
    Natural Computing, 2010, 9 : 703 - 725
  • [29] Research on particle swarm optimization of variable parameter
    Li, Zhe
    Tan, Ruilian
    Ren, Baoxiang
    ADVANCES ON P2P, PARALLEL, GRID, CLOUD AND INTERNET COMPUTING, 2017, 1 : 25 - 33
  • [30] Swarm-based approximate dynamic optimization process for discrete particle swarm optimization system
    Kang, Qi
    Wang, Lei
    Wu, Qidi
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2009, 1 (1-2) : 61 - 70