A Particle Swarm Optimization Based on Dynamic Parameter Modification

被引:5
|
作者
Zhang, Yingchao [1 ,2 ]
Xiong, Xiong [2 ]
Chen, Chao [2 ]
Huang, Xinyi [2 ]
机构
[1] NUIST, Acad Informat & Syst Sci, Nanjing 210044, Jiangsu, Peoples R China
[2] NUIST, Sch Informat & Control Engn, Nanjing 210044, Peoples R China
来源
ADVANCES IN SCIENCE AND ENGINEERING, PTS 1 AND 2 | 2011年 / 40-41卷
关键词
particle swarm optimization; dynamic parameter modification; DPSO;
D O I
10.4028/www.scientific.net/AMM.40-41.201
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A new particle swarm optimization based on dynamic parameter modification is proposed in this paper (Dynamic Parameter Modification Particle Swarm Optimizer, DPSO). In DPSO algorithm, w is doing oscillating decay breaking through the constraint of topical linear decreasing, and the Euclidean distance vertical bar p(i) - x(i)(t)vertical bar, and vertical bar p(g) - x(i)(t)vertical bar is calculated, which respectively stand for the Euclidean distances form the position X-i, of particle i to the best position P-i that the particle has passed and the best position that all the particles have passed under the time t. Parameters c(1) and c(2) of topical PSO are modified dynamically based on the comparison of vertical bar p(i) - x(i)(t)vertical bar, and vertical bar p(g) - x(i)(t)vertical bar in order to coordinate between global search and local search. Then find out the optimal value of Goldstein-Price function using topical PSO and the improved DPSO respectively, and the results demonstrate that compared to topical PSO, DPSO algorithm avoids falling into the local minimum and improves the search efficiency.
引用
收藏
页码:201 / +
页数:2
相关论文
共 50 条
  • [1] Dynamic parameter tuning of particle swarm optimization
    Iwasaki, Nobuhiro
    Yasuda, Keiichiro
    Ueno, Genki
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2006, 1 (04) : 353 - 363
  • [2] Particle Swarm Optimization: Dynamic Parameter Adjustment Using Swarm Activity
    Iwasaki, Nobuhiro
    Yasuda, Keiichiro
    Ueno, Genki
    2008 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), VOLS 1-6, 2008, : 2633 - 2638
  • [3] Particle Swarm Optimization Based Steel Rolling Parameter Optimization
    Shi, Jiachuan
    Yin, Dong
    Yang, Guiling
    2014 10TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2014, : 632 - 636
  • [4] Regularization Parameter Choice of based on particle swarm optimization in dynamic light scattering Inversion
    Dou, Zhenhai
    Wang, Yajing
    2010 SECOND ETP/IITA WORLD CONGRESS IN APPLIED COMPUTING, COMPUTER SCIENCE, AND COMPUTER ENGINEERING, 2010, : 502 - 505
  • [5] A dynamic boundary based particle swarm optimization
    Li, Ying-Qiu
    Chi, Yu-Hong
    Wen, Tao
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2013, 41 (05): : 865 - 870
  • [6] A parameter selection strategy for particle swarm optimization based on particle positions
    Zhang, Wei
    Ma, Di
    Wei, Jin-jun
    Liang, Hai-feng
    EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (07) : 3576 - 3584
  • [7] Parameter Determination of Dynamic Sensor Model with Particle Swarm Optimization Technique
    Wang, Xiaodong
    2009 INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION, VOL I, 2009, : 43 - 46
  • [8] Parameter identification of underwater glider based on particle swarm optimization
    Wang, Li-Ming
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMMUNICATION AND ELECTRONIC INFORMATION ENGINEERING (CEIE 2016), 2016, 116 : 109 - 114
  • [9] Parameter estimation for chaotic system based on particle swarm optimization
    Gao, F
    Tong, HQ
    ACTA PHYSICA SINICA, 2006, 55 (02) : 577 - 582
  • [10] Particle Swarm Optimization Based Load Model Parameter Identification
    Kim, Young-Gon
    Song, Hwachang
    Kim, Hong Rae
    Lee, Byongjun
    IEEE POWER AND ENERGY SOCIETY GENERAL MEETING 2010, 2010,