BOUNDS ON THE NUMBER AND SIZES OF CONJUGACY CLASSES IN FINITE CHEVALLEY GROUPS WITH APPLICATIONS TO DERANGEMENTS

被引:77
作者
Fulman, Jason [1 ]
Guralnick, Robert [1 ]
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
基金
美国国家科学基金会;
关键词
Number of conjugacy classes; simple group; Chevalley groups; partition; derangements; generating function; POINT FREE ELEMENTS; MAXIMAL-SUBGROUPS; RANDOM-WALKS; CHARACTERS; PROBABILITY; GENERATION; MATRICES;
D O I
10.1090/S0002-9947-2012-05427-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present explicit upper bounds for the number and size of conjugacy classes in finite Chevalley groups and their variations. These results have been used by many authors to study zeta functions associated to representations of finite simple groups, random walks on Chevalley groups, the final solution to the Ore conjecture about commutators in finite simple groups and other similar problems. In this paper, we solve a strong version of the Boston-Shale' conjecture on derangements in simple groups for most of the families of primitive permutation group representations of finite simple groups (the remaining cases are settled in two other papers of the authors and applications are given in a third).
引用
收藏
页码:3023 / 3070
页数:48
相关论文
共 68 条
[1]  
Andrews G.E., 1976, THEORY PARTITIONS
[2]   PARTITIONS, Q-SERIES AND LUSZTIG-MACDONALD-WALL CONJECTURES [J].
ANDREWS, GE .
INVENTIONES MATHEMATICAE, 1977, 41 (01) :91-102
[3]   SOLVABLE GENERATION OF GROUPS AND SYLOW SUBGROUPS OF THE LOWER CENTRAL SERIES [J].
ASCHBACHER, M ;
GURALNICK, R .
JOURNAL OF ALGEBRA, 1982, 77 (01) :189-201
[4]   ON THE MAXIMAL-SUBGROUPS OF THE FINITE CLASSICAL-GROUPS [J].
ASCHBACHER, M .
INVENTIONES MATHEMATICAE, 1984, 76 (03) :469-514
[5]   FINITE LINEAR-GROUPS, THE COMMODORE-64, EULER AND SYLVESTER [J].
BENSON, D ;
FEIT, W ;
HOWE, R .
AMERICAN MATHEMATICAL MONTHLY, 1986, 93 (09) :717-719
[6]   THE PROPORTION OF FIXED-POINT FREE ELEMENTS OF A TRANSITIVE PERMUTATION GROUP [J].
BOSTON, N ;
DABROWSKI, W ;
FOGUEL, T ;
GIES, PJ ;
LEAVITT, J ;
OSE, DT ;
JACKSON, DA .
COMMUNICATIONS IN ALGEBRA, 1993, 21 (09) :3259-3275
[7]  
Britnell J., 2008, B LOND MATH SOC, V40, P897
[8]   ON THE NUMBER OF FIXED-POINT FREE ELEMENTS IN A PERMUTATION GROUP [J].
CAMERON, PJ ;
COHEN, AM .
DISCRETE MATHEMATICS, 1992, 106 :135-138
[9]  
Carter Roger W., 1993, FINITE GROUPS LIE TY
[10]   On fixed points of permutations [J].
Diaconis, Persi ;
Fulman, Jason ;
Guralnick, Robert .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2008, 28 (01) :189-218