Trace estimates for stable processes

被引:29
作者
Banuelos, Rodrigo [1 ]
Kulczycki, Tadeusz [2 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47906 USA
[2] Wroclaw Univ Technol, Inst Math, PL-50370 Wroclaw, Poland
基金
美国国家科学基金会;
关键词
D O I
10.1007/s00440-007-0106-x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we study the behaviour in time of the trace (the partition function) of the heat semigroup associated with symmetric stable processes in domains of R(d). In particular, we show that for domains with the so called R-smoothness property the second terms in the asymptotic as t -> 0 involves the surface area of the domain, just as in the case of Brownian motion.
引用
收藏
页码:313 / 338
页数:26
相关论文
共 26 条
[1]  
[Anonymous], 1989, CAMBRIDGE TRACTS MAT
[2]   Eigenvalue gaps for the Cauchy process and a Poincare inequality [J].
Bañuelos, R ;
Kulczycki, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 234 (01) :199-225
[3]   The Cauchy process and the Steklov problem [J].
Bañuelos, R ;
Kulczycki, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 211 (02) :355-423
[4]   A Brascamp-Lieb-Luttinger-type inequality and applications to symmetric stable processes [J].
Bañuelos, R ;
Latala, R ;
Méndez-Hernández, PJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (10) :2997-3008
[5]   Spectral gap for the Cauchy process on convex, symmetric domains [J].
Banuelos, Rodrigo ;
Kulczycki, Tadeusz .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2006, 31 (12) :1841-1878
[6]  
Blumenthal R. M., 1959, Pacific J. Math., V9, P399, DOI DOI 10.2140/PJM.1959.9.399
[7]  
Blumenthal RM., 1961, Trans Am Math Soc, V99, P540
[8]  
Bogdan K, 1997, STUD MATH, V123, P43
[9]   CAN ONE HEAR THE DIMENSION OF A FRACTAL [J].
BROSSARD, J ;
CARMONA, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 104 (01) :103-122
[10]   THE TRACE OF THE HEAT KERNEL IN LIPSCHITZ-DOMAINS [J].
BROWN, RM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 339 (02) :889-900