Cosmological scalar field perturbations can grow

被引:14
作者
Alcubierre, Miguel [1 ]
de la Macorra, Axel [2 ]
Diez-Tejedor, Alberto [3 ,4 ,5 ]
Torres, Jose M. [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 04510, DF, Mexico
[3] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA
[4] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA
[5] Univ Guanajuato, Dept Fis, Div Ciencias & Ingn, Leon 37150, Mexico
来源
PHYSICAL REVIEW D | 2015年 / 92卷 / 06期
关键词
DARK-MATTER; HALO FORMATION; MODEL;
D O I
10.1103/PhysRevD.92.063508
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
It has been argued that the small perturbations to the homogeneous and isotropic configurations of a canonical scalar field in an expanding universe do not grow. We show that this is not true in general, and clarify the root of the misunderstanding. We revisit a simple model in which the zero mode of a free scalar field oscillates with high frequency around the minimum of the potential. Under this assumption the linear perturbations grow like those in the standard cold dark matter scenario, but with a Jeans length at the scale of the Compton wavelength of the scalar particle. Contrary to previous analyses in the literature our results do not rely on time averages and/or fluid identifications, and instead we solve both analytically (in terms of a well-defined series expansion) and numerically the linearized Einstein-Klein-Gordon system. Also, we use gauge-invariant fields, which makes the physical analysis more transparent and simplifies the comparison with previous works carried out in different gauges. As a byproduct of this study we identify a time-dependent modulation of the different physical quantities associated to the background as well as the perturbations with potential observational consequences in dark matter models.
引用
收藏
页数:9
相关论文
共 31 条
  • [11] Fuzzy cold dark matter: The wave properties of ultralight particles
    Hu, W
    Barkana, R
    Gruzinov, A
    [J]. PHYSICAL REVIEW LETTERS, 2000, 85 (06) : 1158 - 1161
  • [12] Structure formation with generalized dark matter
    Hu, W
    [J]. ASTROPHYSICAL JOURNAL, 1998, 506 (02) : 485 - 494
  • [13] Roles of a coherent scalar field on the evolution of cosmic structures
    Hwang, JC
    [J]. PHYSICS LETTERS B, 1997, 401 (3-4) : 241 - 246
  • [14] GRAVITATIONAL-INSTABILITY OF SCALAR FIELDS AND FORMATION OF PRIMORDIAL BLACK-HOLES
    KHLOPOV, MY
    MALOMED, BA
    ZELDOVICH, YB
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1985, 215 (04) : 575 - 589
  • [15] Where are the missing galactic satellites?
    Klypin, A
    Kravtsov, AV
    Valenzuela, O
    Prada, F
    [J]. ASTROPHYSICAL JOURNAL, 1999, 522 (01) : 82 - 92
  • [16] Kolb E.W., 1994, EARLY UNIVERSE
  • [17] Liddle A.R., 2000, Cosmological inflation and large scale structure, DOI [10.1017/CBO9781139175180, DOI 10.1017/CBO9781139175180]
  • [18] Cosmological perturbations
    Malik, Karim A.
    Wands, David
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2009, 475 (1-4): : 1 - 51
  • [19] A model for halo formation with axion mixed dark matter
    Marsh, David J. E.
    Silk, Joseph
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 437 (03) : 2652 - 2663
  • [20] Ultralight scalar fields and the growth of structure in the Universe
    Marsh, David J. E.
    Ferreira, Pedro G.
    [J]. PHYSICAL REVIEW D, 2010, 82 (10):